• Title/Summary/Keyword: 토석류 특성

Search Result 156, Processing Time 0.02 seconds

The Study of Sediment Volume Concentration in Liquefied-Layer of Debris Flow (토석류 유동층에서 토사체적 농도 특성에 관한 연구)

  • Kim, Sungduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.109-115
    • /
    • 2014
  • The purpose of this study is to estimate the sediment volume concentration of the liquified-solid mixture which is included fine sediment fractions, according to the variance of the channel slope and the water supply. The numerical model was performed by using the Finite Differential Element Method (FDM) based on the equation for the mass conservation, momentum conservation and the equation of coarse sediment an fine sediment. In comparison of varying the channel slope, the deeper the channel slope, the inflection point of the sediment concentration was occurred rapidly. In comparison of variance of the water supply, as the water supply increases fluctuation with high sediment concentration. In this situation, debris flow changes to the turbulent flow and the sediment becomes to be floated. In comparison varying the length paved saturated sediment, the longer the length, the high concentration of sediment occurred, for the safety of the slope it is needed to check the possibility of the erosion in the slope by debris flow. The results of this study will provide useful information in predicting of the disaster by the liquified-solid mixture and in prevention of the debris flow with various the slope in the mountain side.

Slope Stability Analysis of Unsaturated Soil in Debris-Flow Occurrence Slopes (토석류 발생 사면의 불포화토 사면안정해석)

  • Kwak, Cheol-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.23-30
    • /
    • 2012
  • This paper is research results of slope stability analysis associated with seepage infiltration for unsaturated soil in debris-flow occurrence slopes. Site investigations were carried out in two slopes, located at Inje in Kangwon province where debris flow occurred in 2006 and at Yangpyung in Kyeunggi province where it occurred in 2010. For unsaturated soil sampled at the zone of debris-flow initiation, soil water characteristic curves with tempe pressure cells and shear strength parameters with newly designed shear strength apparatus were obtained respectively. The commertially available software SEEP/W was used to analyze seepage infiltration in unsaturated soil, based on their properties obtained from test results and the actual rainfall data at the moment of debris flow occurrence, and slope stability analysis with the program of SLOPE/W, associated with results of seepage analysis, was performed to simulate slope failure. As results of this research, seepage infiltration to unsaturated soil due to intensive rainfall was found to cause increase of ground water table as well as degree of saturation. Through this research slope stability analysis for unsaturated soil, considering the actual rainfall characteristic, might be a reasonable method of investigating characteristics of debris flow behavior, in particular, the moment of debris flow occurrence.

Analyses of Debris Flow Characteristics through Site Investigation (현장 조사를 통한 토석류 특성 분석)

  • Yoo, Nam-Jae;Choi, Young-June;Lee, Cheol-Ju
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.135-143
    • /
    • 2009
  • Most of debris flow occurred in Korea have been known to be caused by the heavy rainfall at the soil deposits on the mother rock, affected by conditions of rainfall, topography and geology, especially terrain deposits. A study on debris flow behavior should be carried out by investigating various types of debris flow systematically and analyzing their complicate characteristics in the engineering view points. Tremendous debris flows occurred at Duksan-ri in Inje-gun of Gangwon province during summer in 2006. These sites are selected to study the characteristics of debris flow by investigating the influencing factors on it and analyzing their correlations between them. Most of data about influencing factors were obtained by visiting sites in field.

  • PDF

Experimental Study on the Effect of Arrangement of Cylindrical Countermeasures on Debris Flow Impact Load (원통형 대책구조물의 배치조건에 따른 토석류의 충격하중에 대한 실험적 연구)

  • Cho, Heungseok;Kim, Beomjun;Yune, Chanyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.135-148
    • /
    • 2020
  • In this study, to investigate the effect of the array of cylindrical baffles on debris flow impact load, a series of small-scale tests were conducted according to varying row numbers of installed baffles in the flume. After the test, the behavior of debris flow interacting with baffles during the flow process was investigated. Based on the results, the influence varying velocity and flow depth on Froude number and dynamic pressure coefficient were analyzed. Test results showed that the greatest peak impact load occurred at the second row of baffle arrays. The dynamic pressure coefficient was also estimated by suggested equation and compared with previous studies.

A Random Walk Model for Estimating Debris Flow Damage Range (랜덤워크 모델을 이용한 토석류 산사태 피해범위 산정기법 제안)

  • Young-Suk Song;Min-Sun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.201-211
    • /
    • 2023
  • This study investigated the damage range of the debris flow to predict the amount of collapsed soil in a landslide event. The height of the collapsed slope and the distance traveled by the collapsed soil were used to predict the total trajectory distance using a random walk model. Debris flow trajectory probabilities were calculated through 10,000 Monte Carlo simulations and were used to calculate the damage range as measured from the landslide scar to its toe. Compiled information on debris flows that occurred in the Cheonwangbong area of Mt. Jirisan was used to test the accuracy of the proposed random walk model in estimating the damage range of debris flow. Results of the comparison reveal that the proposed model shows reasonable accuracy in estimating the damage range of debris flow and that using 10 m × 10 m cells allows the damage range to be reproduced with satisfactory precision.

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

Analysis of Debris Flow Characteristics Considering Forest Environmental Factors -Focusing on the Case of Mt. Daeryong in 2013- (산림환경인자를 고려한 토석류 발생특성 분석 -2013년 춘천시 대룡산 사례를 중심으로-)

  • Park, Sae-Am;Yu, Gwang-Hyeon;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.73-80
    • /
    • 2015
  • This paper is research results of the case study on analyzing the characteristics of debris flow considering forest environmental factors, focusing on occurrence of landslides around Mt. Daeryoung in 2013. Extensive landslide of debris flow, caused by heavy rainfall, occurred around Mt. Daeryoung during July in 2013. Field investigation was carried out to construct the data base about forest environmental factor including topography, soil formations and forest type. Thus, contributing factors to cause the landslide of debris flow were investigated so that damages from landslides could be reduced by establishing proper measures.

  • PDF

A Study on Analysis of Damages due to Debris Flow at Jecheon in 2009 (2009년 발생한 제천시의 토석류 피해분석에 관한 연구)

  • Yoo, Nam-Jae;Choi, Young-June;Lee, Cheol-Ju
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.95-101
    • /
    • 2010
  • This paper is results of case study on characteristics of debris flow occurred at Jecheon during a heavy rainfall in 2009. The site studied is the mountain area located at Palsong-ri Bongyang-op in Jecheon-si where serious damages due to debris flow were occurred by heavy rainfall during July 7 to July 16 in 2009. Intensity and duration of rainfall causing debris flow were analyzed on the basis of AWS data. Characteristics of debris flow such as initiation, transportation and deposition were investigated through field reconnaissance. The geological and topographical characteristics of slope where debris flow was triggered were figured out and characteristics of erosion on the bottom and sides of valley during transportation of debris flow were also investigated. The slope and boundary of valley where the debris flow started to be deposited were studied.

  • PDF

Operation of Experimental Watershed in Mountainous Rivers of Yeongseo Region in 2009 (2009년 영서지역 산지하천 시험유역의 운영)

  • Kim, Sang-Ho;Min, Sang-Ki;Hwang, Sin-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1906-1910
    • /
    • 2010
  • 산지하천은 지형적인 특성상 만곡지점이 많이 발달되어 있기 때문에 홍수시에는 유속이 매우 빠르며 수위상승과 횡방향 수위 변동이 심하다. 이러한 산지하천의 흐름특성은 집중호우가 발생할 경우 급격한 홍수위 상승과 함께 하상세굴이 발생하게 된다. 특히 집중호우로 인해 산간지역 지면의 침식이나 하천의 세굴로 인해 토석류가 발생하게 되며, 이로 인해 하천 주변에서 많은 재해가 발생하게 된다. 따라서, 본 연구에서는 영서지역 산지하천에 해당하는 시험유역 운영을 통하여 집중호우시 하천의 만곡지점에서 수위상승과 하상세굴로 인한 토석류의 발생으로 극심한 피해를 주고 있는 문제들을 해결하기 위해 고품질의 신뢰성 있는 수리/수문 자료를 지속적으로 확보하고자 한다. 강우관측소와 수위관측소 등의 계측시스템을 설치하여 실시간 수문관측 자료의 전송 및 현장 조사를 통해 얻은 수리/수문 자료에 대하여 DB 자료를 구축하였다. 2009년에 유량측정을 실시한 속사천에 위치한 의풍포교 이외에 2010년에는 장평교, 백옥포교, 상안미 3개의 지점을 추가하여 측정을 실시하고자 한다. 이와 같은 수리/수문 자료의 수집은 유역의 수문특성에 대해 보다 정확한 규명과 관측된 자료를 바탕으로 한 수문순환모형의 개발을 위한 검정 및 검증자료로 활용될 것이다.

  • PDF