• Title/Summary/Keyword: 토사유실

Search Result 113, Processing Time 0.027 seconds

The Influence Analysis for Soil Loss in Reservoir Slant using GIS-based Soil Loss Model (GIS기반 토사유실모델을 이용한 저수지 사면의 토사유실 영향 분석)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.108-117
    • /
    • 2004
  • Soil particles from rainfall flow into reservoir and give lots of influence in water quality because the geological conditions and landcover characteristics of Imdong watershed have a weakness against soil loss. Especially, reservoir slant is indicated by the main source area of soil loss. This study selected RUSLE model that could apply GIS and satellite image to evaluate the contribution rate of soil loss in reservoir slant. And we carried out an on-the-spot survey for the range, width and condition of reservoir slant that give much influences to the accuracy of soil loss. As the result of evaluation to the influence of soil loss in reservoir slant, it showed 2.64% in comparison with Imdong watershed. In view of these results, the influence of soil loss in reservoir slant was evaluated in low comparing with Imdong watershed relatively.

  • PDF

Parcel based Information System for Sediment Disaster by using Mobile GIS (모바일 GIS를 이용한 필지별 토사재해정보시스템 개발)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.59-74
    • /
    • 2016
  • The collapses of retaining walls or embankments, the soil erosion and landslides around urban areas are occurring by heavy rainfalls because of the recent climate change. This study conducts the soil erosion modeling, while applying the spatial information such as soil maps, DEM and landcover maps to the RUSLE model. Especially this study draws up the soil erosion grade map and the unit soil erosion grade map by parcels through coupling the soil erosion with the cadastral map, and by that can calculate the number of parcels by soil erosion grades. Also the sediment disaster information system based on the mobile GIS is developed to identify the soil erosion grades of site in the urban plannings and the construction fields. The sediment disaster information system can identify the present conditions of the registers of lands, buildings and roads, and confirm the RUSLE factors, the soil erosion, the sediment disaster grades by parcels. Also it is anticipated that this system can support the sediment disaster work of site effectively through searching the locations and attributes of the specific parcels by Administrative Dong and the soil erosion grades.

Assessment of Soil Loss in Irrigation Reservoir based on GIS (GIS를 이용한 관개용 저수지의 토사유실량 산정에 관한 연구)

  • Park, Woo Sik;Hong, Soon Heon;Ahn, Chang Hwan;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.439-446
    • /
    • 2013
  • This paper is about assessment of soil loss in irrigation reservoir based on GIS. Natural disaster caused by soil loss whose natural incidence has been rapidly reduced due to successful tree planting campaign shows high potential risk, since the latest localized heavy rain resulted from extreme weather event and artificial land development acts as direct factors for land disaster. To prevent it, various techniques and technologies have been used to predict effect of soil loss. However, reliability of techniques and technologies to predict its effect precisely is relatively low so far because the natural disaster by soil loss is taken place by complicated interaction between possible factors and direct factors. Geospatial approach is essential to examine these interactions. In this regard, this study will provide detailed plan to improve prediction reliability for soil loss of irrigation reservoir, using GIS that has Hydrologic -Topographical parameter and digital map as its input parameters.

Applying Weighting Value Method for the Estimation of Monthly Soil Erosion (월별 토사유실량 평가를 위한 가중치 기법의 시험 적용)

  • Lee Geun-Sang;Park Jin-Hyeog;Hwang Eui-Ho;Koh Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.70-74
    • /
    • 2005
  • Soil particles from rainfall flow into reservoir and give lots of influence In water quality because the geological conditions and landcover characteristics of imha basin have a weakness against soil loss. Especially, much soil particles induced to reservoir in shape of muddy water when it rains a lot because the geological characteristics of imha reservoir are composed of clay and shale layer. Therefore, field turbidity data can be Indirect-standards to estimate the soil erosion of imha basin. This study evaluated annual soil erosion using GIS-based RUSLE (Revised Universal Soil Loss Equation) and developed rainfall weighting value method using time-series rainfall data to estimate monthly soil erosion. In view of field turbidity data(2003 yr), we can find out monthly soil erosion with rainfall weighting value is more efficient than that with monthly rainfall data.

  • PDF

Application of SPOT 5 Satellite Image and Landcover Map for the examination of Soil Erosion Source Area (토사유실 원인지역 검토를 위한 SPOT 5 위성영상과 토지피복도의 활용)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.927-935
    • /
    • 2005
  • Soil erosion by rainfall is important factor for basin management because it reduces reservoir capacity and breaks out the contamination of water caused by turbid water. Recently, soil erosion study with GIS is in progress but does not consider soil erosion source area. This study calculated soil erosion amount using GIS-based soil erosion model in Imha basin and examined soil erosion source area using SPOT 5 High-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area by applying field survey method in common areas such as dry field and orchard area those are difficult to confirm soil erosion source area using satellite image.

Evaluation of GIS-based Soil Erosion Amount with Turbid Water Data (탁수자료를 이용한 GIS 기반의 토사유실량 평가)

  • Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.75-81
    • /
    • 2004
  • Because geological types and land cover conditions of Imha basin have a very weak characteristics to soil erosion, most soil particles (low into river and bring about high density turbidity in Imha reservoir when it rains a lot. This study used GIS-based RUSLE model and analyzed soil erosion to make basic data for the countermeasures of turbidity reduction in Imha reservoir. Total soil erosion amounts was evaluated as 5,782,829 ton/yr using rainfall data(2003) and especially Dongbu-basin was extracted as most source area or soil erosion among Imha sub-basin. Also it was evaluated that soil erosion amount by RUSLE model was suitable by applying turbidity survey data.

  • PDF

The evaluation of Soil Erosion Risk of Urban Area based on Geospatial Information (공간정보를 활용한 도심지 토사유실 위험도 평가)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.57-70
    • /
    • 2015
  • Recently, soil erosion have been thickening from heavy rainfall according to climate change. These soil erosion is main reason to cause landslide, the water quality, agricultural counterproductivity and so on. Therefore, it is important to find out the main source area to cause soil erosion using geospatial data including DEM, soil map and land cover those are very sensitive to soil erosion modeling. This study evaluated soil erosion using RUSLE model. Hyoja 4-Dong and Pyonghwa 2-Dong among Wansan-Gu showed high as 10,869 ton/yr and 10,477 ton/yr respectively and Ua 2-Dong of Deokjin-Gu showed high as 17,603 ton/yr in soil erosion. And Hyoja 1-Dong and Pyonghwa 1-Dong among Wansan-Gu showed high as $1,485.7ton/km^2$ and $1,297.0ton/km^2$ respectively and Inhu 3-Dong of Deokjin-Gu showed high as $2,557.7ton/km^2$ in unit soil erosion that was applied to the evaluation of soil erosion potential. It is anticipated that achievement of this study can apply to forecast and prepare the risk of soil erosion and debris flow in urban area.

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

The Estimation of GIS-based Monthly Soil Erosion with Rainfall Weighting Value (강우가중치를 이용한 GIS기반 월별 토사유실량 평가)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Chae, Hyo-Sok;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.65-73
    • /
    • 2005
  • Because the geological features of Imha basin are composed of clay and shale layer, much soil particle flows into reservoir in shape of muddy water when it rains a lot. Therefore, turbidity data can be indirect-index to estimate the soil erosion of Imha basin. This study evaluated annual soil erosion using GIS-based soil erosion model and applied rainfall weighting value method by time-series rainfall data to estimate monthly soil erosion. In view of 2003 turbidity data, monthly soil erosion with rainfall weighting value is more efficient than monthly soil erosion with rainfall data.

  • PDF

Efficiency of Soil Erosion to a Debris Barrier using GIS (GIS를 이용한 사방댐의 토사유실 저감효과 분석)

  • Lee, Geun-Sang;Lee, Moung-Jin;Hong, Hyun-Jung;Hwang, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.158-168
    • /
    • 2007
  • This study analyzed the reduction efficiency to a debris barrier planed with the Office of Forestry and local provinces among diverse measurements for the diminution of high-density turbid water and soil erosion of Soyang reservoir. As the analysis of soil erosion of Soyang river basin applying rainfall data (2005) and GIS database, soil erosion is estimated as 4,819,494 ton. Also, in the analysis of unit soil erosion, Chugok-, Jaun-, and Ohang stream shows high value comparing with other watersheds. Debris barrier watersheds are extracted as the center of 94 debris barrier points using GIS spatial analysis. As the analysis of soil erosion and sediment delivery ratio (SDR) of debris barrier watershed, the reduction efficiency of soil erosion of debris barrier of 2005 is analyzed as 6.8%, that is 330,203 ton. Also, the reduction efficiency of soil erosion of debris barrier of 2005 increases as 10.5%, that is 506,783 ton, when the locations of debris barrier are changed into the high soil erosion area over 5,000 ton.

  • PDF