• Title/Summary/Keyword: 토마토뿌리

Search Result 131, Processing Time 0.027 seconds

Characterization of Agrobacterium spp. Isolated from Roots of the Crown Gall-infected Grapevine in Chungbuk (충북지방의 뿌리혹병 감염 포도나무 뿌리에서 분리한 Agrobacterium속 균의 특성)

  • Yang, Seung-Up;Park, Se-Jung;Lee, Young-Kee;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • The roots of grapevine in the field in which the crown gall was occurred severely in Chungbuk province were collected and Agrobacterium spp. were isolated from the roots using the selective media. The selected 13 isolates were identified as A. tumefaciens with fatty acid analysis using MIDI system, nucleotide sequence of 16S rDNA, biochemical characteristics, and PCR with the species-specific primers. A. vitis, a pathogen of crown gall disease of grapevine was not isolated from the roots. All of the isolates did not show pathogenicity on the tomato seedlings and the stem and root of grapevine. Eric-PCR showed that DNA band patterns of the root isolates were a little more similar to A. tumefaciens than A. vitis. However, overall similarity between the root isolates and the pathogenic strains of A. tumefaciens and A. vitis was low by rep-PCR. These results suggest that a pathogen causing crown gall in grapevine in Chungbuk province may transmitted through the seedlings rather than via soil or roots.

Plant Growth Promoting Fungi Isolated from Rhizosphere of Zoysiagrass in Korea (잔디 근권에서 분리한 식물생장촉진 균류)

  • Park, Myung-Soo;Yu, Seung-Hun
    • The Korean Journal of Mycology
    • /
    • v.33 no.1
    • /
    • pp.30-34
    • /
    • 2005
  • Fifteen PGPF (plant growth promoting fungi) isolates were selected from 728 fungal isolates collected from rhizosphere of zoysiagrass in Korea. Identification of the 15 isolates was based on their morphological characteristics. They were classified as Gliocladium sp. (n=1), Penicillium sp. (n=5), Trichoderma sp. (n=3), Fusarium sp. (n=3), and unidentifed species (n=3). Of the 15 isolates, six (PF-31, PF-136, PF-238, PF-255, PF-395, PF-420) significantly promoted the growth of tomato seedlings, and three (PF-31, PF-101, PF-255) also promoted the growth of hot pepper and two (PF-31, PF-225) also promoted the growth of cucumber, The 15 PGPF isolates were divided into 4 groups based on root colonizing ability. Isolates PF-17, PF-101 and PF-225 were included in the group 1, which had high root colonizing ability.

Complete genome sequence of Bacillus velezensis T20E-257, a plant growth-promoting bacterium, isolated from tomato (Solanum lycopersicum L.) root (토마토 뿌리에서 분리한 식물생육촉진 세균 Bacillus velezensis T20E-257균주의 유전체 염기서열)

  • Lee, Shin Ae;Kim, Sang Yoon;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.342-343
    • /
    • 2017
  • Bacillus velezensis T20E-257 was isolated from the root tissue of a tomato plant and exhibited plant growth-promoting activity. Here we present the complete genome of strain T20E-257. The genome contains 3,900,066 base pairs with a G + C content of 46.7% in 2 contigs. The genome includes 3,708 coding sequences, 27 rRNAs, and 86 tRNAs. We found gene clusters encoding secondary metabolites with an antimicrobial activity and genes related to the production of indole-3-acetic acid and 2,3-butanediol, which play a role in plant growth and health.

Complete genome sequence of Chryseobacterium sp. T16E-39, a plant growth-promoting and biocontrol bacterium, isolated from tomato (Solanum lycopersicum L.) root (토마토 뿌리에서 분리한 식물생육촉진과 생물방제 세균 Chryseobacterium sp. T16E-39 균주의 유전체 서열)

  • Lee, Shin Ae;Kim, Sang Yoon;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.351-353
    • /
    • 2017
  • Chryseobacterium sp. strain T16E-39, isolated from roots of a tomato plant, promotes plant growth and suppresses phytophthora blight and bacterial wilt diseases. The complete genome of strain T16E-39 consists of a circular chromosome with 4,872,888 base pairs with a G + C content of 35.22%. The genome includes 4,289 coding sequences, 15 rRNAs, and 71 tRNAs. We detected genes involved in phosphate solubilization, phytohormone regulation, antioxidant activity, chitin degradation, and the type IX secretion system (T9SS) that may be related to growth promotion and disease suppression in plants.

Characterization of an Ion Channel Prepared from Tomato Roots and Inhibitory Effects by Heavy Metal Ions (토마토 뿌리조직에서 분리한 이온채널의 중금속에 의한 저해)

  • Shin, Dae-Seop;Han, Min-Woo;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • In order to characterize ion channels present in tomato roots, microsomes were incorporated into an artificial lipid bilayer arranged for electrophysiological analysis. Of the five different ion channels that could be found, a channel of 450 pS conductance was found most frequently. This channel displayed subconductance states of 450, 257 and 105 pS. All subconductance states showed linear current-voltage relationships. At positive holding potentials, high frequency of transient channel openings was observed; however, at negative potentials, the open times were long and open probability high. Po was 0.83 at -40 mV. When an additional 50 mM $K^+\;or\;Na^+$ was added to the cis side of bilayer, the reversal potentials shifted in the negative direction to near -10 mV. Thus, the 450 pS cation channel selects poorly between $K^+\;and\;Na^+$. In the presence of $100\;{\mu}M$ metal ions, the channel activity was severely inhibited by $La^{3+},\;Ba^{2+},\;and\;Zn^{2+}$, and Po was decreased to 0.2 or even less. However, $Al^{3+}\;and\;Cd^{2+}$ decreased the activity by only 20%. Interestingly, each metal ion showed different kinetics of channel inhibition. While $500\;{\mu}M\;La^{3+}$ inhibited the activities of all subconductance state, 1 mM $Zn^{2+}$ inhibited all except the 105 pS state. $Cd^{2+}$ changed the gating of the channel from a long-opening state to brief transient openings even at negative holding potentials. These data represent that the metal ions may have different binding sites on the channel protein and could be useful modulators and probes to investigate structural characteristics as well as the functional roles of the 450 pS channel on the root physiology.

Control Effects of Imicyafos GR against Two Species of the Root-knot Nematodes (Meloidogyne incognita and Meloidogyne hapla) (살선충제 Imicyafos 입제의 2종 뿌리혹선충에 대한 방제 효과)

  • Kim, Hyeong Hwan;Jung, Young Hak;Kim, Dong Hwan;Ha, Tae Ki;Yoon, Jung Beom;Park, Chung Gyoo;Choo, Ho Yul
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.101-105
    • /
    • 2015
  • Efficacy of novel nematicide, imicyafos GR was evaluated against two species of the root-knot nematodes in pot and greenhouse conditions. When tested in pots, the population of Meloidogyne incognita and M. hapla was reduced sixty days after treatment, with mortality rate of 91.5% and 90.6%, respectively. Suppression effect of imicyafos GR on root galling in tomato was tested. The number of root galls caused by M. incognita and M. hapla was reduced 60 days after nematode inoculation, with the efficacy of 94.2% and 95.1%, respectively. Under greenhouse conditions planted with watermelon, melon, cucumber, and tomato, the efficacy of imicyafos GR on M. incognita persisted up to 60 days after treatment, showing 90% of control efficacy. Moreover, the number of root galling was more reduced than fosthiazate treatment, with the potential as a control agent.

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF

Effects of treatment of Enterobacter ludwigii SJR3 on growth of tomato plant and its expression of stress-related genes under abiotic stresses (비생물적 스트레스 환경에서 Enterobacter ludwigii SJR3 처리 시 토마토의 생장과 스트레스-관련 유전자의 발현)

  • Kim, Na-Eun;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • This study examined effects of Enterobacter ludwigii SJR3 showing a high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, on growth of tomato plant and its expression of stress-related genes under drought and salt stress. SJR3 strain was inoculated at $10^6cell/g$ soil to 4-week grown tomato plants, and drought and salt stresses were treated. After additional incubation for 1 week, root length, stem length, fresh weight and dry weight of tomato plants treated with SJR3 increased by 37.8, 37.2, 96.8 and 146.6%, respectively compared to those of uninoculated plants in drought stress environment, and they increased by 19.2, 25.4, 19.5, and 105.8%, respectively in salt stress environment. Proline content in tomato leaves increased significantly under stress conditions as one of a protecting substance against stresses, but proline contents in tomato treated with SJR3 decreased by 62.1 and 54.1%, respectively. Relative expression of genes encoding ACC oxidase, ACO1 and ACO4, ethylene response factor genes ERF1 and ERF4, and some other stress-related genes were examined from tomato leaves. Compared to the non-stressed tomato, expressions of all stress-related genes increased significantly in the stressed tomato, but gene expressions in the inoculated tomato were similar to those of no-stressed control tomato. Therefore, E. ludwigii SJR3 may play an important role in mitigating drought and salt stress in plants, and can increase productivity of crops under various abiotic stresses.

Suppressive Effect of Organic Farming Materials on the Development of Tomato Gray Mold (토마토 잿빛곰팡이병에 대한 유기농업자재의 억제효과)

  • Hong, Sung-Jun;Kim, Yong-Ki;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Kim, Suk-Chul
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.567-582
    • /
    • 2015
  • Botrytis cinerea infects stems, leaves and fruits of greenhouse tomato and can cause serious economic losses. This study was conducted to develop organic farming control method against tomato gray mold. Twenty two organic farming materials including mineral and plant extracts were screened for the suppressive activity against Botrytis cinerea, in vitro and in vivo. Among the organic farming materials, sulfur, copper, Chinese twinleaf extract and rhubarb extract decreased by 51.7-90% of the spore germination of Botrytis cinerea. Also, gray mold incidence was reduced more than 90% on tomato stems by treating sulfur, seaweed extracts, rhubarb root extracts and Chinese twinleaf extract. After the selected four organic farming materials were applied on tomato cultivated in greenhouse, their control effects against the tomato gray mold were tested. When the water soluble sulfur was foliar-sprayed on the tomato leaves infected by artificial inoculation with spore suspension of Botrytis cinerea, it showed 87.9% of control value. Also, control activity of the water soluble sulfur was paralleled with chemical fungicide, diethofencarb+carbendazim. The above mentioned results indicate the sulfur formulation can be used as chemical fungicide alternatives for controlling tomato gray mold in the greenhouse.

Investigation of soil factors on physiological disorder of vegetable crops in vinyl house -(I). Tomato, Chinese cabbage and summer radish (시설원예 작물의 생리장해 유발 토양요인구명 -I. 토마토, 배추, 무우)

  • Choi, Byung-Ju;Lee, Chong-Ho;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.128-134
    • /
    • 1990
  • Croping pattern, fertilizer application, Soil chemical characteristics, plant nutritional condition and growth status were investigated in three major vinyl house farms near Yesan. Croping pattern changed from tomato to pumpkin due to tomato diseases such as wilting and blossom-end rot. Wilting seemed to be closely related with high EC, nitrogen and root cyst nematodes. Calcium deficiency seemed to be due to high potassium, EC in soil and high uptake of iron. Chinese cabbages in summer showed poor growth (80% inhibition) due to high EC(1.8mmho/cm) and easily got wenny root disease that might due to high phosphorus (1055ppm) in soil. Summer radish showed poor growth (50% inhibition) due to high EC(1.6mmho/cm), K and Mg resulting in base imbalance. Farmers used 5 kinds of compound fertilizer as basal application and one without P for top dressing. Urea and KCL were used for top dressing. Heavy application of livestock manure and chemical fertilizer for every crop made eutrophic even in subsoil.

  • PDF