• Title/Summary/Keyword: 텔레뷰어 이미지

Search Result 6, Processing Time 0.023 seconds

APPLICATION OF TELEVIEWER AND COLOR-CORESCANNER FOR THE ESTIMATION OF GNEISS STONE RESOURCES OF HADONG, KYEONGSANNAMDO PROVINCE (하동지역 편마암 석재의 품질 평가를 위한 텔레뷰어 및 칼라 코어스캐너의 응용)

  • Hyun, Hye-Ja;Kim, Jung-Yul
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.255-267
    • /
    • 2004
  • Analysis of fracture system in a stone quarry mine is a critical importance in assessing the recoverable amounts of building stones as well as in establishing the systematic and efficient development plan. Rock formation comprising vein structure, degree of weathering, and compositon of minerals, is a critical factor of estimating the stone quality. The aim of this study is to provide desirable informations about both fracture pattern and rock formation by using Televiewer and Color-corescanner. Televiewer measurement were conducted at 7 boreholes in the gneiss quarry mine, Hadong, Kyeongsangnamdo province and the corresponding cores were scanned using Color-corescanner at the same place. In Televiewer images, all kinds of fractures were clearly observed and a better discrimination of stone quality can be identified. Meanwhile, the core images with high resolution (max. 20 pixels/mm) provided detailed informations on rock formation such as features of particles and fissures that can be nearly undetected by Televiewer.

  • PDF

Derivation of rock parameters from Televiewer data (텔레뷰어에 의한 토목설계 매개변수의 산출)

  • Kim Jung-Yul;Kim Yoo-Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.137-155
    • /
    • 1999
  • Recently, Televiewer(Borehole Acoustic Scanner(Televiewer)) has come to be widely used specially for the general engineering construction design. The Televiewer tool using a focussed acoustic beam is to detect the amplitude and traveltime of each reflected acoustic signal at the wall, resulting in the amplitude- and traveltime image respectively. Fractures can be well detected, because they easily scatter the acoustic energy due to the highly narrow beam. In addition, the drilling work will rough the borehole wall so that the acoustic energy can be scattered simply due to the roughness of the wall. Thus, the amplitude level can be directed associated with the elastic properties(impedance) and the hardness of the rock as well. Meanwhile, the traveltime image provides an information about the borehole shape and can be converted to a high precision 3D caliper log(max. 288 arms). In this paper, based on the high resolution of Televiewer images, general evaluation methods are illustrated to derive very reliable rock parameters.

  • PDF

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.

Quantitative Assessment of Joint Roughness Coefficient from Televiewer and Core scan Images (텔레뷰어 및 코어 스캔 이미지를 이용한 절리면 거칠기 계수의 정량적인 평가)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1205-1210
    • /
    • 2005
  • The behavior of rock mass and solute(e.g. groundwater, radioactivity) flow in fractured rock can be directly influenced by joint roughness. The characteristics of joint roughness is also a main factor for the rock classification(e.g. RMR, Q system) which is usually used in tunnel design. Nevertheless, most of JRC estimation has been carried out only by the examination with the naked eye. This JRC estimation has a lack of objectivity because each investigator judges JRC by his subjective opinion. Therefore, it will be desirable that the assessment of JRC is performed by a numerical analysis which can give a quantitative value corresponding to the characteristics of a roughness curve. Meanwhile, roughness curves for joint surfaces which are observed in drill cores have been obtained only along linear profiles. Although roughness curves are measured in the same joint surface, they can frequently show diverse aspects in a standpoint of roughness characteristics. If roughness curves can be measured along the elliptical circumferences of joint surfaces from core scanning images or Televiewer images, they will certainly be more comprehensive than those measured along linear profiles for roughness characteristics of joint surfaces. This study is focus on dealing with (1) extracting automatically roughness curves from core scan image or Televiewer image, (2) improving the accuracy of quantitative assessment of JRC using fractal dimension concept.

  • PDF

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Interpretation and Analysis of Seismic Crosshole Data: Case History (탄성파 토모그래피 단면측정 데이터 분석 및 해석: 현장응용 사례)

  • Kim Jung-Yul;Kim Yoo-Sung;Hyun Hye-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • Recently crosshole seismic tomography has come to be widely used especially for the civil engineering, because it can provide more detail information than any other surface method, although the resolution of tomogram will be inevitably deteriorated to some extent due to the limited wavefield aperture on the nonuniqueness of traveltime inversion. In addition, our field sites often consist of a high-velocity bed rock overlain by low-velocity rock, sometimes with a contrast of more than 45 percent, and furthermore the bed rock is folded. The first arriving waves can be then the refracted ones that travel along the bed rock surface for some source/receiver distances. Thus, the desirable first arrivals can be easily misread that cause severe distortion of the resulting tomogram, if it is concerned with (straight ray) traveltime inversion procedure. In this case, comparision with synthetic data (forward modeling) is a valuable tool in the interpretation process. Besides, abundant information is contained in the crosshole data. For instance, examination of tube waves can be devoted to detecting discontinuities within the borehole such as breakouts, faults, fractures or shear zones as well as the end of the borehole. Specific frequency characteristics of marine silty mud will help discriminate from other soft rocks. The aim of this paper is to present several strategies to analyze and interpret the crosshole data in order to improve the ability at first to determine the spatial dimensions of interwell anomalies and furthermore to understand the underground structures. To this end, our field data are demonstrated. Possibility of misreading the first arrivals was illustrated. Tube waves were investigated in conjunction with the televiewer images. Use of shot- and receiver gathers was examined to benefit the detectabilities of discontinuities within the borehole.

  • PDF