• 제목/요약/키워드: 텍스트 요약

검색결과 159건 처리시간 0.026초

자연어 처리 인공지능 기술을 활용한 생활기록부 작성 효율성 제고 향상 연구 (A Study on the Improvement of the Efficiency of School Report Documentation Using Artificial Intelligence Technology in Natural Language Processing)

  • 서정호;김웅
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.409-412
    • /
    • 2022
  • 본 논문에서는 대입수시전형에서 생활기록부 입력은 대한민국 입시를 결정하는 매우 중요한 평가자료이다. 30명의 교사를 대상으로 실시한 설문조사를 통해서 교사들이 생활기록부를 작성하는데 가장 많이 참고하는 자료로는 수행평가 결과물, 발표내용, 보고서, 감상문 등의 학습 결과물(90%), 학생들이 작성한 자기평가서(73.3%), 관찰 평가지(50%)로 나타났으며, 80%(24명)의 교사들이 생활기록부를 작성하는데 고충을 겪고 있음을 확인할 수 있었다. 교사들이 느끼는 고충의 원인으로는 학생들의 개인별 특성 파악이 어려워 차별성있게 작성하는 것(76.7%)을 가장 힘들어 하였고, 작성해야 할 많은 수의 학생(60%), 문구를 만드는데 대해 부담(86.7%)을 느끼는 것으로 나타났다. 이 과정에서 교사의 전문성 뿐만 아니라 기계적이고 반복적인 작업도 많이 요구되고 있기 때문에, 생활기록부를 작성하는데에 도움을 줄 수 있는 프로그램 개발이 필요하다고 고안을 내었다. 교사들 역시 반복적이고 일률적인 생활기록부 작성에 도움을 줄 수 있는 프로그램이 있다면 유용하게 활용할 것이라는 응답이 90%였다. 따라서 본 연구에서 자연어 처리 인공지능 기술을 활용하여 교사들이 생활기록부를 작성하는데 있어 기계적이고 단순한 작업을 도와 주는 프로그램 개발에 대한 연구의 필요성을 제시하였다. 제안하는 프로그램은 학생들의 탐구보고서, 토론, 발표, 감상문 등의 생화기록부 작성 참고자료들을 텍스트로 변환하고 추상요약(Abstractive Summarization)을 통해 교사들이 효율적으로 작성하는데 활용될 수 있도록 설계하였다. 연구 결과 생활기록부 작성 참고자료를 텍스트로 변환하는 것과 추상요약을 할 수 있는 개방형 데이터셋까지는 확보하였다. 추상요약을 구현하는 방법에 대해서는 보다 심도 있는 추가연구가 필요하였다. 이를 통해 교사들이 교육 본질에 더욱 충실할 수 있는 환경을 마련하고, 내실 있는 생활기록부 작성이 공교육 신뢰 제고에 밑바탕이 되고자 한다.

  • PDF

문서 주제에 따른 문장 생성을 위한 LSTM 기반 언어 학습 모델 (LSTM based Language Model for Topic-focused Sentence Generation)

  • 김다해;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.17-20
    • /
    • 2016
  • 딥러닝 기법이 발달함에 따라 텍스트에 내재된 의미 및 구문을 어떠한 벡터 공간 상에 표현하기 위한 언어 모델이 활발히 연구되어 왔다. 이를 통해 자연어 처리를 기반으로 하는 감성 분석 및 문서 분류, 기계 번역 등의 분야가 진보되었다. 그러나 대부분의 언어 모델들은 텍스트에 나타나는 단어들의 일반적인 패턴을 학습하는 것을 기반으로 하기 때문에, 문서 요약이나 스토리텔링, 의역된 문장 판별 등과 같이 보다 고도화된 자연어의 이해를 필요로 하는 연구들의 경우 주어진 텍스트의 주제 및 의미를 고려하기에 한계점이 있다. 이와 같은 한계점을 고려하기 위하여, 본 연구에서는 기존의 LSTM 모델을 변형하여 문서 주제와 해당 주제에서 단어가 가지는 문맥적인 의미를 단어 벡터 표현에 반영할 수 있는 새로운 언어 학습 모델을 제안하고, 본 제안 모델이 문서의 주제를 고려하여 문장을 자동으로 생성할 수 있음을 보이고자 한다.

  • PDF

템플릿 기반의 자동 소셜 매거진 및 영상 합성 서비스 (Template-based Auto Social Magazine and Video Creation Service)

  • 이재원;장달원;김미지;김지수;김서율;이종설
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.129-132
    • /
    • 2019
  • 최근 자연어 처리 기술에 대한 중요도가 높아지고, 발전 속도가 빨라지면서, 산업 전반에 걸쳐 챗봇에 대한 수요가 증가하고 있다. 본 논문은 챗봇을 이용한 소셜 매거진 생성 및 배포, 그리고 이를 활용하여 사용자에게 텍스트를 음성으로 변환하여 동영상의 형태로 전달해 주는 시스템을 다루고 있다. 챗봇이 사용자 대화를 수집, 분석하여 상황에 맞는 키워드를 추출하고, 중복 콘텐츠 제거, 텍스트 요약 등 일련의 과정을 거쳐 소셜 매거진을 생성 및 배포하는 서비스와, 매거진의 각 콘텐츠를 구성하는 이미지, 텍스트 정보를 가지고 음성 합성, 자막 생성, 영상 효과 등을 이용하여 영상을 합성하는 서비스에 관한 것이다. 본 논문에서 제안한 시스템에 대한 성능은 실험을 통하여 검증하였다.

  • PDF

Noisy 텍스트 임베딩을 이용한 한국어 감정 분석 (Korean Sentiment Analysis by using Noisy Text Embedding)

  • 이현영;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.506-509
    • /
    • 2019
  • 신문기사나 위키피디아와 같이 정보를 전달하는 텍스트와는 달리 사람의 감정 및 의도를 표현하는 텍스트는 다양한 형태의 노이즈를 포함한다. 본 논문에서는 data-driven 방법을 이용하여 노이즈와 단어들 사이의 관계를 LSTM을 이용하여 하나의 벡터로 요약하는 모델을 제안한다. 노이즈 문장 벡터를 표현하는 방식으로는 단방향 LSTM 인코더과 양방향 LSTM 인코더의 두 가지 모델을 이용하여 노이즈를 포함하는 영화 리뷰 데이터를 가지고 감정 분석 실험을 하였고, 실험 결과 단방향 LSTM 인코더보다 양방향 LSTM인 코더가 우수한 성능을 보여주었다.

  • PDF

문장 수반 관계를 고려한 문서 요약 (Document Summarization Considering Entailment Relation between Sentences)

  • 권영대;김누리;이지형
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.179-185
    • /
    • 2017
  • 문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graph-based ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법 (Multi-Document Summarization Method of Reviews Using Word Embedding Clustering)

  • 이필원;황윤영;최종석;신용태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.535-540
    • /
    • 2021
  • 다중문서는 하나의 주제가 아닌 다양한 주제로 구성된 문서를 의미하며 대표적인 예로 온라인 리뷰가 있다. 온라인 리뷰는 정보량이 방대하기 때문에 요약하기 위한 여러 시도가 있었다. 그러나 기존의 요약모델을 통해 리뷰를 일괄적으로 요약할 경우 리뷰를 구성하고 있는 다양한 주제가 소실되는 문제가 발생한다. 따라서 본 논문에서는 주제의 손실을 최소화하며 리뷰를 요약하기 위한 기법을 제시한다. 제안하는 기법은 전처리, 중요도 평가, BERT를 활용한 임베딩 치환, 임베딩 클러스터링과 같은 과정을 통해 리뷰를 분류한다. 그리고 분류된 문장은 학습된 Transformer 요약모델을 통해 최종 요약을 생성한다. 제안하는 모델의 성능 평가는 기존의 요약모델인 seq2seq 모델과 ROUGE 스코어와 코사인 유사도를 평가하여 비교하였으며 기존의 요약모델과 비교하여 뛰어난 성능의 요약을 수행하였다.

IT 인물 관련 텍스트 정보의 효율적인 검색을 위한 Sub-language의 속성 연구 (Studies on the linguistic properties of the IT-People documents for an efficient Information Retrieval)

  • 고승희;김소연;천승미;남지순;김권양;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2007년도 제19회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.241-249
    • /
    • 2007
  • 본 연구는 IT 인물 관련 텍스트 정보의 효율적인 검색을 위하여 문서 내에서 인물과 관련된 정보를 담고 있는 문장들이 어떠한 특징을 가지고 실현되는가를 살펴보고 언어적 속성을 어떻게 구조화하고 형식화할 것인가를 논의하는 것을 목적으로 한다. 언어적 속성 분석을 위해서 전자신문 내에서 인물 관련 코퍼스를 수집하고 이들의 분석을 통해 다음과 같이 문제가 되는 특징들을 확인하였다. 즉 외래어 음차 표기문제, 복합명사 및 명사구 그리고 서술 명사적 표현의 문제 등으로 요약된다. IT라는 특정 영역에 대해 텍스트 내에서의 어휘-통사적 패턴을 분석하고 언어적 특징에 대한 효율적 기술을 위해서는 LGG 부분 문법 그래프 모델을 활용하도록 한다. 본 연구는 특정 영역인 IT 관련 문서에서 자연언어 텍스트를 대상으로 정보 검색할 때 문제가 되는 다양한 언어학적 현상들을 다루며, 향후보다 확장된 영역에서의 효율적 언어 처리에 대한 방법론적 대안을 제시할 수 있을 것으로 기대된다.

  • PDF

STT(Speech-To-Text)와 ChatGPT 를 활용한 강의 요약 애플리케이션 (A Lecture Summarization Application Using STT (Speech-To-Text) and ChatGPT)

  • 김진웅;금보성 ;김태국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.297-298
    • /
    • 2023
  • COVID-19 가 사실상 종식됨에 따라 대학 강의가 비대면 온라인 강의에서 대면 강의로 전환되었다. 온라인 강의에서는 다시 보기를 통한 복습이 가능했지만, 대면강의에서는 녹음을 통해서 이를 대체하고 있다. 하지만 다시 보기와 녹음본은 원하는 부분을 찾거나 내용을 요약하는데 있어서 시간이 오래 걸리고 불편하다. 본 논문에서는 강의 내용을 STT(Speech-to-Text) 기술을 활용하여 텍스트로 변환하고 ChatGPT(Chat-Generative Pre-trained Transformer)로 요약하는 애플리케이션을 제안한다.

음성인식과 자연어 처리 딥러닝을 통한 전자의무기록자동 생성 시스템 (Automatic Electronic Medical Record Generation System using Speech Recognition and Natural Language Processing Deep Learning)

  • 손현곤;류기환
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.731-736
    • /
    • 2023
  • 최근 의료 현장은 전자의무기록, 전자건강기록 등의 의료 기록을 전산화하여 저장하고 관리하는 시스템이 의무적으로 적용되거나 전체 의료 현장에 보급되어 환자 개개인의 과거 의료 기록을 추가적인 의료 행위에 활용하고 있다. 그러나 일반적인 의료 문진 및 상담 간 발생하는 의료진과 환자 간의 대화는 별도로 기록되거나 저장되지 않고 있어 추가적인 환자의 주요 정보는 효율적으로 활용되지 못하고 있다. 이에 따라, 의료 문진 현장에서 발생하는 의료진과 환자와의 대화를 저장하고 이를 텍스트 데이터로 변환하여 주요한 문진 내용만 자동으로 추출, 요약하여 정보화하는 음성인식과 자연어 처리 딥러닝을 통한 의료상담 요약문을 자동으로 생성하는 전자의무기록 시스템을 제안한다. 본 시스템은 의료 종사자와 환자의 의료 상담 내용의 인식과정을 거쳐서 텍스트 정보를 획득한다. 이렇게 획득된 텍스트를 복수의 문장으로 구분하고, 생성된 문장에 포함된 복수 키워드의 중요도를 산출한다. 산출된 중요도를 기반으로 복수의 문장에 순위를 매기고, 순위를 기반으로 문장들을 요약하여 최종 전자의무기록 데이터를 생성한다. 제안하는 시스템 성능은 정량적 분석을 통하여 우수함을 확인한다.

이산 푸리에 변환을 적용한 텍스트 패턴 분석에 관한 연구 - 표절 문장 탐색 중심으로 - (A Study on Text Pattern Analysis Applying Discrete Fourier Transform - Focusing on Sentence Plagiarism Detection -)

  • 이정송;박순철
    • 한국산업정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.43-52
    • /
    • 2017
  • 패턴 분석은 신호 및 영상 처리와 텍스트 마이닝 분야에서 가장 중요한 기술 중 하나이다. 이산 푸리에 변환(Discrete Fourier Transform: DFT)은 일반적으로 신호와 영상의 패턴을 분석하는데 사용된다. 본 논문에서는 DFT가 텍스트 패턴 분석에도 적용될 수 있음을 가정하고 문서의 텍스트 패턴이 다른 문서에서도 존재하는지를 탐색하는 표절 문장 탐색에 세계 최초로 적용하였다. 이를 위해 텍스트를 ASCII 코드로 변환하여 신호화하고 복사/붙여넣기, 용어의 재배치 등 단순한 표절 형태의 탐색은 Cross-Correlation(상호상관)을 이용하였다. 또한 유의어를 사용하거나 번역 및 요약 등의 표절 형태를 탐색하기 위해 워드넷(WordNet) 유사도를 사용하였다. 실험을 위해 표절 탐색 분야의 저명한 워크숍인 PAN에서 제공하는 공식적인 데이터 셋(2013 Corpus)을 사용하였으며, 실험 결과 11개의 표절 문장 탐색 기법 중 4번째로 우수한 성능을 보였다.