• 제목/요약/키워드: 텍스트 요약

검색결과 159건 처리시간 0.027초

키워드 요약의 세 가지 방법론 비교 (Compare Three Method for Keyword Summary)

  • 강종렬;남지성;박지나;김웅섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.852-854
    • /
    • 2019
  • 본 논문은 정확한 연관검색어를 보여주지 못하는 기존의 검색에서 벗어나기 위해 이미지와 PDF에서 텍스트를 추출하고 키워드 요약하는 방법을 사용하였다. 텍스트를 키워드로 요약하는 알고리즘으로는 TextRank, LSA, MMR을 사용하였고, 세 가지 방법으로 키워드를 요약하고 키워드 요약 결과와 Query의 코사인 유사도를 이용하여 추출한 문서와 Query와의 연관성을 확인하여 세 가지 알고리즘을 비교하였다.

완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법 (Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization)

  • 고은정;김남규
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.125-148
    • /
    • 2018
  • 다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.

긴급 신고 접수 지원을 위한 대화 상태 추적 및 요약 기반 실시간 텍스트 분석 (Real-time Text Analysis with Dialogue State Tracking and Summarizing to Assist Emergency Call Reporting)

  • 오교중;김진원;김일훈;임채균;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.16-21
    • /
    • 2021
  • 소방 본부의 119 종합상황실에서는 24시간 국민의 안전을 위해 긴급 신고를 접수한다. 수보사 분들은 24시간 교대 근무를 하며 신고 전화에 접수 및 응대 뿐만 아니라 출동, 지휘, 관제 업무를 함께 수행한다. 이 논문에서는 이 같은 수보사의 업무 지원을 위해 우리가 구축한 음성 인식과 결합된 실시간 텍스트 분석 시스템에 대해서 소개하고, 출동 지령서 자동 작성을 위한 키워드 검출 및 대화 요약 및 개체명 인식에 기반한 대화 상태 추척 방법에 대해 설명하고자 한다. 대화 요약 기술은 음성 인식 결과를 실시간으로 분석하여 중요한 키워드의 검출 및 지령서 자동 작성을 위한 후처리를 수행하며, 문장 수준에서 개체명 인식 및 관계 분석을 통한 목적 대화의 대화 상태 추적을 수행한다. 이 같은 응용 시스템은 딥러닝 및 기계학습 기반의 자연어 처리 시스템이 실시간으로 텍스트 분석을 수행할 수 있는 기술 수준이 되었음을 보여주며, 긴급한 상황에서 많은 신고 전화를 접수하는 수보사의 업무 효율 증진 뿐만 아니라, 정확하고 신속한 위치 파악으로 신고자를 도와주어 국민안전 증진에 도움을 줄 수 있을 것으로 기대된다.

  • PDF

단어 간 의미적 연관성을 고려한 어휘 체인 기반의 개선된 자동 문서요약 방법 (An Improved Automatic Text Summarization Based on Lexical Chaining Using Semantical Word Relatedness)

  • 차준석;김정인;김판구
    • 스마트미디어저널
    • /
    • 제6권1호
    • /
    • pp.22-29
    • /
    • 2017
  • 최근 스마트 디바이스의 급속한 발달과 보급으로 인하여 인터넷 웹상에서 등장하는 문서의 데이터는 하루가 다르게 증가 하고 있다. 이러한 정보의 증가로 인터넷 웹상에서는 대량의 문서가 증가하여 사용자가 해당 문서의 데이터를 이해하는데, 어려움을 겪고 있다. 그렇기 때문에 자동 문서 요약 분야에서 문서를 효율적으로 요악하기 위해 다양한 연구가 진행 되고 있다. 효율적으로 문서를 요약하기 위해 본 논문에서는 텍스트랭크 알고리즘을 이용한다. 텍스트랭크 알고리즘은 문장 또는 키워드를 그래프로 표현하며, 단어와 문장 간의 의미적 연관성을 파악하기 위해 그래프의 정점과 간선을 이용하여 문장의 중요도를 파악한다. 문장의 상위 키워드를 추출 하고 상위 키워드를 기반으로 중요 문장 추출 과정을 거친다. 중요 문장 추출 과정을 거치기 위해 단어 그룹화 과정을 거친다. 단어그룹화는 특정 가중치 척도를 이용하여 가중치 점수가 높은 문장을 선별하여 선별된 문장들을 기반으로 중요 문장을 중요 문장을 추출하여, 문서를 요약을 하게 된다. 이를 통해 기존에 연구 되었던 문서요약 방법보다 향상된 성능을 보였으며, 더욱 효율적으로 문서를 요약할 수 있음을 증명하였다.

딥러닝 텍스트 요약 모델의 데이터 편향 문제 해결을 위한 학습 기법 (Training Techniques for Data Bias Problem on Deep Learning Text Summarization)

  • 조준희;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.949-955
    • /
    • 2022
  • 일반적인 딥러닝 기반의 텍스트 요약 모델은 데이터셋으로부터 자유롭지 않다. 예를 들어 뉴스 데이터셋으로 학습한 요약 모델은 커뮤니티 글, 논문 등의 종류가 다른 글에서 핵심을 제대로 요약해내지 못한다. 본 연구는 이러한 현상을 '데이터 편향 문제'라 정의하고 이를 해결할 수 있는 두 가지 학습 기법을 제안한다. 첫 번째는 고유명사를 마스킹하는 '고유명사 마스킹'이고 두 번째는 텍스트의 길이를 임의로 늘이거나 줄이는 '길이 변화'이다. 또한, 실제 실험을 진행하여 제안 기법이 데이터 편향 문제 해결에 효과적임을 확인하며 향후 발전 방향을 제시한다. 본 연구의 기여는 다음과 같다. 1) 데이터 편향 문제를 정의하고 수치화했다. 2) 요약 데이터의 특징을 바탕으로 학습 기법을 제안하고 실제 실험을 진행했다. 3) 제안 기법은 모든 요약 모델에 적용할 수 있고 구현이 어렵지 않아 실용성이 뛰어나다.

국가R&D과제정보 요약을 위한 한국어 정보요약 시스템 (Korean Information Summary System for National R&D Projcet Information Summary)

  • 이종원;김태현;신동구;조우승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.72-74
    • /
    • 2022
  • 국가과학기술지식정보서비스(이하 NTIS)에서는 국가R&D과제정보를 제공하고 있다. 과제정보는 '과제명', '과제수행기관', '연구책임자명' 등의 메타정보와 '연구목표', '연구내용', '기대효과'와 같은 과제를 설명하는 텍스트들로 구성되어있다. 과제정보 100만건을 대상으로 검색한 결과목록에서 '연구목표' 나 '연구내용' 등을 모두 확인하여 원하는 과제정보를 찾기 위해서는 많은 시간이 필요하다는 문제가 있다. 이러한 문제점을 해소하기 위해, 본 논문에서는 국가R&D 과제정보 내에서 장문의 텍스트로 구성된 부분을 요약하는 과제정보 요약 시스템을 제안하고자 한다. 한국어의 언어학적 특징을 분석하여 전처리기를 구축하고 전처리된 텍스트 정보를 처리하기 위한 자연어 처리 기술 기반 과제정보 요약 모델을 개발하였다. 이를 통해 장문으로 구성된 과제정보를 압축 및 요약된 형태로 제공하여, 이용자들이 요약정보만으로도 전반적인 내용을 쉽고 빠르게 유추하는 데 도움이 될 것이다.

  • PDF

한글 텍스트 검색을 위한 요약 화일 기법에 관한 연구 (A Reasearch on Signature File Methods for Korean Text Retrieval)

  • 송병호;이석호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1991년도 제3회 한글 및 한국어정보처리 학술대회
    • /
    • pp.231-237
    • /
    • 1991
  • 텍스트에 대한 내용 본위 검색 기법으로서 요약 화일(signature file) 기법은 역화일(inverted file)이 허용되지 않을 때 매우 유용하다. 그러나 한글은 영문과 달리 어절의 형성이 복잡하고 띄어쓰기 형태가 고정되지 않음에 따라 기존의 단어 위주 영문 본위 요약 화일 기법을 그대로 적용시킬 수 없다. 본 논문에서는 이를 위하여 띄어쓰기를 무시하고 중복된 2음절 패턴을 도출하여 요약 화일을 구성, 검색하는 기법을 제안한다. 이 기법은 일본어, 중국어 등 비슷한 문제를 가진 외국어에도 적용될 수 있다.

  • PDF

텍스트 요약을 위한 스파크 기반 대용량 데이터 전처리 (Spark-Based Big Data Preprocessing for Text Summarization)

  • 지동준;전희국;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.383-385
    • /
    • 2022
  • 텍스트 요약(Text Summarization)은 자연어 처리(NLP) 분야의 주요 작업 중 하나이다. 높은 정확성을 보이는 문서 요약 딥 러닝 모델을 만들기 위해서 대용량 학습 데이터가 필요한데, 대용량 데이터 전처리 과정에서 처리 시간, 메모리 관리 등과 같은 문제가 발생한다. 본 논문에서는 대규모 병렬처리 플랫폼 Apache Spark 를 사용해 추상 요약 딥 러닝 모델의 데이터 전처리 과정을 개선하는 방법을 제안한다. 실험 결과 제안한 방법이 기존 방법보다 데이터 전처리 시간이 개선된 결과를 보이고 있다.

e-러닝 콘텐츠의 정보제시방식이 교수실재감 및 학업성취도에 미치는 효과 (The Effect of e-Learning Contents' Information Presentation Method on Teaching Presence and Academic Achievement)

  • 김진하;김경희;이성주
    • 컴퓨터교육학회논문지
    • /
    • 제22권3호
    • /
    • pp.79-87
    • /
    • 2019
  • 본 연구는 이중부호화, 매체풍부성, 인지부하의 정도가 다른 e-러닝 콘텐츠가 학습에 미치는 영향을 살펴보고자 실행되었다. 이를 위해 e-러닝 콘텐츠의 학습내용 요약과 설명의 정보제시방식을 정보 양과 종류에 띠라 분류한 후, 교수실재감과 학업성취도에 미치는 영향을 살펴보았다. 요약 제시방식은 텍스트형과 텍스트+그림형으로, 설명 제시방식은 음성형과 음성+영상형으로 구분하였다. 본 연구의 결과는 다음과 같다. 첫째, 요약방식 중 텍스트+그림형의 교수실재감이 텍스트형보다 의의 있게 높았다. 둘째, 설명방식 중 음성형의 학업성취도가 음성+영상형보다 의의 있게 높았다. 셋째, 요약방식과 설명방식 간에 교수실재감과 학업성취도에서 유의미한 상호작용이 있었다.

신경망 또는 k-NN에 의한 신문 기사 분류와 그의 성능 비교 (The Comparison of Neural Network and k-NN Algorithm for News Article Classification)

  • 조태호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.363-365
    • /
    • 1998
  • 텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.

  • PDF