• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.03 seconds

A study on the Elements of Interest for VR Game Users Using Text Mining and Text Network Analysis - Focused on STEAM User Review Data - (텍스트마이닝과 네트워크 분석을 적용한 VR 게임 사용자의 관심 요소 연구 - STEAM 사용자 리뷰 데이터를 중심으로 -)

  • Wui, Min-Young;Na, Ji Young;Park, Young Il
    • Journal of Korea Game Society
    • /
    • v.18 no.6
    • /
    • pp.69-82
    • /
    • 2018
  • The need of high quality VR contents has been steadily raised in recent years. Therefore, this study investigated the user's interest factors of VR game which is receiving the most attention among VR contents. We used STEAM review data and applied Text mining and Network analysis to perform this research. As a result, it was possible to confirm 4 word clusters related VR game users. Each cluster is named by 'presence', 'first person view game', 'auditory factor' and 'interaction'. This study has its meaning. First, user related research would be very helpful to develop high quality VR game. Second, it confirms that review data of VR game users can be structured, analyzed and used.

BigData Research in Information Systems : Focusing on Journal Articles about Information Systems (정보시스템 분야의 빅데이터 연구 흐름 분석 : Information Systems 관련 저널을 중심으로)

  • Park, Kyungbo;Kim, Juyeong;Kim, Han-Min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.681-689
    • /
    • 2019
  • The 46th Davos Forum of the World Economic Forum (WEF) predicts the continued growth of the 4th industry in the future. Currently, the 4th industry is attracting attention in various academic and practical fields. As a core technology of the 4th industry, Big Data is regarded as a major resource to lead the 4th industrial revolution along with artificial intelligence. As the growing interest in Big Data, researches on it are actively being done. However, literature studies on existing Big Data are focused on qualitative research, and quantitative research is insufficient. Therefore, this study aims to analyze the big data research flow in MIS field and to make academic thirst for quantification. This study has collected 145 abstracts of big data papers published in major journals in MIS field and confirmed that a majority of papers are published in Decision Support Systems Journal. Text mining and text network analysis were performed only for DSS journals to eliminate bias. As a result of the analysis, it was found out that researches on combining big data in the management field between 2012 and 2014, and researches on system development and analysis method for using big data from 2015 to 2017 were conducted.

Topic Modeling of Profit Adjustment Research Trend in Korean Accounting (텍스트 마이닝을 이용한 이익조정 연구동향 토픽모델링)

  • Kim, JiYeon;Na, HongSeok;Park, Kyung Hwan
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.125-139
    • /
    • 2021
  • This study identifies the trend of Korean accounting researches on profit adjustment. We analyzed the abstract of accounting research articles published in Korean Citation Index (KCI) by using text mining technique. Among papers whose themes were profit adjustment, topics were divided into 4 parts: (i) Auditing and audit reports, (ii) corporate taxes and debt ratios, (iii) general management strategy of companies, and (iv) financial statements and accounting principles. Unlike the prediction that financial statements and accounting principles would be the main topic, auditing was analyzed as the most studied area. We analyzed topic trends based on the number of papers by topic, and could figure out the impact of K-IFRS introduction on profit adjustment research. By using Big Data method, this study enabled the division of research themes that have not been available in the past studies. This study enables the policy makers and business managers to learn about additional considerations in addition to accounting principles related to profit adjustment.

Investigation of Topic Trends in Computer and Information Science by Text Mining Techniques: From the Perspective of Conferences in DBLP (텍스트 마이닝 기법을 이용한 컴퓨터공학 및 정보학 분야 연구동향 조사: DBLP의 학술회의 데이터를 중심으로)

  • Kim, Su Yeon;Song, Sung Jeon;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.135-152
    • /
    • 2015
  • The goal of this paper is to explore the field of Computer and Information Science with the aid of text mining techniques by mining Computer and Information Science related conference data available in DBLP (Digital Bibliography & Library Project). Although studies based on bibliometric analysis are most prevalent in investigating dynamics of a research field, we attempt to understand dynamics of the field by utilizing Latent Dirichlet Allocation (LDA)-based multinomial topic modeling. For this study, we collect 236,170 documents from 353 conferences related to Computer and Information Science in DBLP. We aim to include conferences in the field of Computer and Information Science as broad as possible. We analyze topic modeling results along with datasets collected over the period of 2000 to 2011 including top authors per topic and top conferences per topic. We identify the following four different patterns in topic trends in the field of computer and information science during this period: growing (network related topics), shrinking (AI and data mining related topics), continuing (web, text mining information retrieval and database related topics), and fluctuating pattern (HCI, information system and multimedia system related topics).