• Title/Summary/Keyword: 텍스트 연구

Search Result 3,495, Processing Time 0.045 seconds

Fintech Trends and Mobile Payment Service Anlaysis in Korea: Application of Text Mining Techniques (국내 핀테크 동향 및 모바일 결제 서비스 분석: 텍스트 마이닝 기법 활용)

  • An, JungKook;Lee, So-Hyun;An, Eun-Hee;Kim, Hee-Woong
    • Informatization Policy
    • /
    • v.23 no.3
    • /
    • pp.26-42
    • /
    • 2016
  • Recently, with the rapid growth of the O2O market, Fintech combining the finance and ICT technology is drawing attention as innovation to lead "O2O of finance", along with Fintech-based payment, authentication, security technology and related services. For new technology industries such as Fintech, technical sources, related systems and regulations are important but previous studies on Fintech lack in-depth research about systems and technological trends of the domestic Fintech industry. Therefore, this study aims to analyze domestic Fintech trends and find the insights for the direction of technology and systems of the future domestic Fintech industry by comparing Kakao Pay and Samsung Pay, the two domestic representative mobile payment services. By conducting a complete enumeration survey about the tweets mentioning Fintech until June 2016, this study visualized topics extraction, sensitivity analysis and keyword analyses. According to the analysis results, it was found that various topics have been created in the technologies and systems between 2014 and 2016 and different keywords and reactions were extracted between topics of Samsung Pay based on "devices" such as Galaxy and Kakao Pay based on "service" such as KakaoTalk. This study contributes to analyzing the unstructured data of social media by period by using social media mining and quantifying the expectations and reactions of consumers to services through the sentiment analysis. It is expected to be the foundation of Fintech industry development by presenting a strategic direction to Fintech related practitioners.

A Development Plan for Co-creation-based Smart City through the Trend Analysis of Internet of Things (사물인터넷 동향분석을 통한 Co-creation기반 스마트시티 구축 방안)

  • Park, Ju Seop;Hong, Soon-Goo;Kim, Na Rang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.67-78
    • /
    • 2016
  • Recently many countries around the world are actively promoting smart city projects to address various urban problems such as traffic congestion, housing shortage, and energy scarcity. Due to development of the Internet of Things (IoT), the development of a smart city with sustainability, convenience, and environment-friendliness was enabled through the effective control and reuse of urban resources. The purpose of this study is to analyze the technical trends of IoT and present a development plan for smart city which is one of the applications of the IoT. To this end, the news articles of the Electronic Times between 2013 and 2015were analyzed using the text mining technique and smart city development cases of other countries were investigated. The analysis results revealed the close relationships of big data, cloud, platforms, and sensors with smart city. For the successful development of a smart city, first, all the interested parties in the city must work together to create new values throughout the entire process of value chain. Second, they must utilize big data and disclose public data more actively than they are doing now. This study has made academic contribution in that it has presented a big data analysis method and stimulated follow-up studies. For the practical contribution, the results of this study provided useful data for the policy making of local governments and administrative agencies for smart city development. This study may have limitations in the incorporation of the total trends because only the news articles of the Electronic Times were selected to analyze the technical trends of the IoT.

An Analysis of Causes of Marine Incidents at sea Using Big Data Technique (빅데이터 기법을 활용한 항해 중 준해양사고 발생원인 분석에 관한 연구)

  • Kang, Suk-Young;Kim, Ki-Sun;Kim, Hong-Beom;Rho, Beom-Seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.408-414
    • /
    • 2018
  • Various studies have been conducted to reduce marine accidents. However, research on marine incidents is only marginal. There are many reports of marine incidents, but the main content of existing studies has been qualitative, which makes quantitative analysis difficult. However, quantitative analysis of marine accidents is necessary to reduce marine incidents. The purpose of this paper is to analyze marine incident data quantitatively by applying big data techniques to predict marine incident trends and reduce marine accident. To accomplish this, about 10,000 marine incident reports were prepared in a unified format through pre-processing. Using this preprocessed data, we first derived major keywords for the Marine incidents at sea using text mining techniques. Secondly, time series and cluster analysis were applied to major keywords. Trends for possible marine incidents were predicted. The results confirmed that it is possible to use quantified data and statistical analysis to address this topic. Also, we have confirmed that it is possible to provide information on preventive measures by grasping objective tendencies for marine incidents that may occur in the future through big data techniques.

Research on Development of Support Tools for Local Government Business Transaction Operation Using Big Data Analysis Methodology (빅데이터 분석 방법론을 활용한 지방자치단체 단위과제 운영 지원도구 개발 연구)

  • Kim, Dabeen;Lee, Eunjung;Ryu, Hanjo
    • The Korean Journal of Archival Studies
    • /
    • no.70
    • /
    • pp.85-117
    • /
    • 2021
  • The purpose of this study is to investigate and analyze the current status of unit tasks, unit task operation, and record management problems used by local governments, and to present improvement measures using text-based big data technology based on the implications derived from the process. Local governments are in a serious state of record management operation due to errors in preservation period due to misclassification of unit tasks, inability to identify types of overcommon and institutional affairs, errors in unit tasks, errors in name, referenceable standards, and tools. However, the number of unit tasks is about 720,000, which cannot be effectively controlled due to excessive quantities, and thus strict and controllable tools and standards are needed. In order to solve these problems, this study developed a system that applies text-based analysis tools such as corpus and tokenization technology during big data analysis, and applied them to the names and construction terms constituting the record management standard. These unit task operation support tools are expected to contribute significantly to record management tasks as they can support standard operability such as uniform preservation period, identification of delegated office records, control of duplicate and similar unit task creation, and common tasks. Therefore, if the big data analysis methodology can be linked to BRM and RMS in the future, it is expected that the quality of the record management standard work will increase.

The case study for university writing class through the classics of Orient - Focusing on in the book of 『Zhuangzi』 (동양고전을 활용한 대학 글쓰기 수업 사례 연구 - 『장자(莊子)子』 <제물론(齊物論)>을 중심으로)

  • Choi, Yun jeong
    • (The)Study of the Eastern Classic
    • /
    • no.48
    • /
    • pp.311-340
    • /
    • 2012
  • This research is the case study on the course of 'Masterpiece Reading & Fine Composition Writing' in Ewha Waman's University which opens this class as a intensified writing course. In this course, part in the book of "Zhuangzi" is selected as the reading text. This research targets at highlighting the characteristics and effectiveness which appears in when the class choose the classics of Orient as writing text. This research divides the student's performance into two steps. Understanding stage and Evaluation stage. In Understanding stage, the student read part in the book of "Zhuangzi", write a discussion paper and discuss on, and in Evaluation stage, the student write the essay, depending on their previous performance in Understanding stage. This research discusses on each stage's characteristics, and analyzes the effectiveness of each ones. Especially, in the stage of Evaluation this research focuses on the relative view in perception of outside, finding self-introspection factor, and accommodating communication message. By connecting "Zhuangzi" and writing, this research tries to rediscover the era of the variety and its value, suggest the meaning of self-consciousness, and finally draw out the significance of open thought and creative writing. This research suggests on the meaningness of a modern reinterpretation on the classics and also provides the example of instructive usage of the classical text.

Exploring Issues Related to the Metaverse from the Educational Perspective Using Text Mining Techniques - Focusing on News Big Data (텍스트마이닝 기법을 활용한 교육관점에서의 메타버스 관련 이슈 탐색 - 뉴스 빅데이터를 중심으로)

  • Park, Ju-Yeon;Jeong, Do-Heon
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.27-35
    • /
    • 2022
  • The purpose of this study is to analyze the metaverse-related issues in the news big data from an educational perspective, explore their characteristics, and provide implications for the educational applicability of the metaverse and future education. To this end, 41,366 cases of metaverse-related data searched on portal sites were collected, and weight values of all extracted keywords were calculated and ranked using TF-IDF, a representative term weight model, and then word cloud visualization analysis was performed. In addition, major topics were analyzed using topic modeling(LDA), a sophisticated probability-based text mining technique. As a result of the study, topics such as platform industry, future talent, and extension in technology were derived as core issues of the metaverse from an educational perspective. In addition, as a result of performing secondary data analysis under three key themes of technology, job, and education, it was found that metaverse has issues related to education platform innovation, future job innovation, and future competency innovation in future education. This study is meaningful in that it analyzes a vast amount of news big data in stages to draw issues from an education perspective and provide implications for future education.

A Comparative Analysis of OTT Service Reviews Before and After the Onset of the Pandemic Using Text Mining Technique: Focusing on the Emotion-Focused Coping and Nostalgia (텍스트 마이닝을 활용한 코로나 19 전후 온라인 동영상 서비스(OTT) 리뷰 비교분석 연구 - 정서 중심 대처와 노스탤지어를 중심으로)

  • Ko, Minjeong;Lee, Sangwon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.375-388
    • /
    • 2021
  • This study aims to contribute to the understanding of consumer behavior during the COVID-19 by comparing blog reviews of an over-the-top (OTT) online video service from before and during the pandemic. We anticipate that the COVID-19 outbreak prompts the use of the OTT service as part of an emotion-focused coping strategy derived from the loss of personal control and the subsequent avoidance motivation. We also posit that a strong yearning for life before COVID-19 will increase interest in the content that fulfills a need for nostalgia. Our analysis of Netflix reviews provides empirical evidence of the effects of an emotion-focused coping strategy and nostalgia on OTT service usage. First, the titles of the reviews posted during COVID-19 indicate that consumers were less likely to mention OTT services other than Netflix, more interested in domestic content, and used OTT services as an avoidance-denial strategy. Second, the blog content demonstrates that while pre-COVID reviews tend to focus on the practical benefits of OTT services, those posted during the pandemic focus on mood, emotions, and dialogue. In addition, interest in comedy and romance genres increased during COVID-19. Third, we identified a greater preference for realistic or everyday content that depicted the pre-pandemic era. This is the first empirical study to investigate the effects of COVID-19 on video streaming usage in Korea. In addition, this research contributes to the field of marketing by expanding our understanding of online video service users during COVID-19 and identifies practical implications for OTT services in the midst of a pandemic.

Methodology for Classifying Hierarchical Data Using Autoencoder-based Deeply Supervised Network (오토인코더 기반 심층 지도 네트워크를 활용한 계층형 데이터 분류 방법론)

  • Kim, Younha;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.185-207
    • /
    • 2022
  • Recently, with the development of deep learning technology, researches to apply a deep learning algorithm to analyze unstructured data such as text and images are being actively conducted. Text classification has been studied for a long time in academia and industry, and various attempts are being performed to utilize data characteristics to improve classification performance. In particular, a hierarchical relationship of labels has been utilized for hierarchical classification. However, the top-down approach mainly used for hierarchical classification has a limitation that misclassification at a higher level blocks the opportunity for correct classification at a lower level. Therefore, in this study, we propose a methodology for classifying hierarchical data using the autoencoder-based deeply supervised network that high-level classification does not block the low-level classification while considering the hierarchical relationship of labels. The proposed methodology adds a main classifier that predicts a low-level label to the autoencoder's latent variable and an auxiliary classifier that predicts a high-level label to the hidden layer of the autoencoder. As a result of experiments on 22,512 academic papers to evaluate the performance of the proposed methodology, it was confirmed that the proposed model showed superior classification accuracy and F1-score compared to the traditional supervised autoencoder and DNN model.

A Study of Pre-trained Language Models for Korean Language Generation (한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.309-328
    • /
    • 2022
  • This study empirically analyzed a Korean pre-trained language models (PLMs) designed for natural language generation. The performance of two PLMs - BART and GPT - at the task of abstractive text summarization was compared. To investigate how performance depends on the characteristics of the inference data, ten different document types, containing six types of informational content and creation content, were considered. It was found that BART (which can both generate and understand natural language) performed better than GPT (which can only generate). Upon more detailed examination of the effect of inference data characteristics, the performance of GPT was found to be proportional to the length of the input text. However, even for the longest documents (with optimal GPT performance), BART still out-performed GPT, suggesting that the greatest influence on downstream performance is not the size of the training data or PLMs parameters but the structural suitability of the PLMs for the applied downstream task. The performance of different PLMs was also compared through analyzing parts of speech (POS) shares. BART's performance was inversely related to the proportion of prefixes, adjectives, adverbs and verbs but positively related to that of nouns. This result emphasizes the importance of taking the inference data's characteristics into account when fine-tuning a PLMs for its intended downstream task.

Quantification of Schedule Delay Risk of Rain via Text Mining of a Construction Log (공사일지의 텍스트 마이닝을 통한 우천 공기지연 리스크 정량화)

  • Park, Jongho;Cho, Mingeon;Eom, Sae Ho;Park, Sun-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Schedule delays present a major risk factor, as they can adversely affect construction projects, such as through increasing construction costs, claims from a client, and/or a decrease in construction quality due to trims to stages to catch up on lost time. Risk management has been conducted according to the importance and priority of schedule delay risk, but quantification of risk on the depth of schedule delay tends to be inadequate due to limitations in data collection. Therefore, this research used the BERT (Bidirectional Encoder Representations from Transformers) language model to convert the contents of aconstruction log, which comprised unstructured data, into WBS (Work Breakdown Structure)-based structured data, and to form a model of classification and quantification of risk. A process was applied to eight highway construction sites, and 75 cases of rain schedule delay risk were obtained from 8 out of 39 detailed work kinds. Through a K-S test, a significant probability distribution was derived for fourkinds of work, and the risk impact was compared. The process presented in this study can be used to derive various schedule delay risks in construction projects and to quantify their depth.