• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.03 seconds

A Study on Intelligent ebook Multilingual TTS Service based on HTML5 (HTML5기반 지능형 전자책 다국어 TTS 서비스에 관한 연구)

  • Ryu, Ho-Bin;Kim, Ha-Kyung;Hong, Seong-Yong
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.815-817
    • /
    • 2016
  • 웹 기술의 발전은 인간 사회의 변화에 많은 영향을 주고 있다. 웹 발전 분야에서도 전자책 기술 발전은 확연하게 달라지고 있으며, 단순 텍스트 정보만을 제공하는 기술을 넘어 음성서비스를 위한 기술 분야에도 많은 연구가 활발하게 진행되고 있다. 따라서 본 논문에서는 웹 표준 기술인 HTML5기반 지능형 전자책 다국어 TTS 서비스를 위한 관련 연구 조사와 전자책 사용자의 편리성 및 접근성을 강화하기 위한 전자책 제작 및 서비스 방법에 대하여 연구하였다. 본 연구의 목적은 전자책 사용자들에게 텍스트를 포함한 전자책에서 텍스트 및 여러 객체들에 주제 혹은 설명을 TTS 서비스가 가능하도록 하고, 사용자의 선택적 영역과 언어에 따라 다국어 TTS가 자동 변환되어 서비스 할 수 있도록 연구 개발 하는 것이다.

A Study on the Application of Machine Learning in Literary Texts - Focusing on Rule Selection for Speaker Directive Analysis - (문학 텍스트의 머신러닝 활용방안 연구 - 화자 지시어 분석을 위한 규칙 선별을 중심으로 -)

  • Kwon, Kyoungah;Ko, Ilju;Lee, Insung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.313-323
    • /
    • 2021
  • The purpose of this study is to propose rules that can identify the speaker referred by the speaker directive in the text for the realization of a machine learning-based virtual character using a literary text. Through previous studies, we found that when applying literary texts to machine learning, the machine did not properly discriminate the speaker without any specific rules for the analysis of speaker directives such as other names, nicknames, pronouns, and so on. As a way to solve this problem, this study proposes 'nine rules for finding a speaker indicated by speaker directives (including pronouns)': location, distance, pronouns, preparatory subject/preparatory object, quotations, number of speakers, non-characters directives, word compound form, dispersion of speaker names. In order to utilize characters within a literary text as virtual ones, the learning text must be presented in a machine-comprehensible way. We expect that the rules suggested in this study will reduce trial and error that may occur when using literary texts for machine learning, and enable smooth learning to produce qualitatively excellent learning results.

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.19-24
    • /
    • 2009
  • 의사소통에서 대화자 간 감정의 이해는 메시지의 내용만큼이나 중요하다. 비언어적 요소에 의해 감정에 관한 더 많은 정보가 전달되고 있기는 하지만, 텍스트에도 화자의 감정을 나타내는 언어적 표지가 다양하고 풍부하게 녹아 들어 있다. 본 연구의 목적은 인간언어공학에 활용할 수 있는 감정 온톨로지를 설계하는 데 있다. 텍스트 기반 감정 처리 분야의 선행 연구가 감정을 분류하고, 각 감정의 서술적 어휘 목록을 작성하고, 이를 텍스트에서 검색함으로써, 추출된 감정의 정확도가 높지 않았다. 이에 비해, 본 연구에서 제안하는 감정 온톨로지는 다음과 같은 장점을 갖는다. 첫째, 감정 표현의 범주를 기술 대상(언어적 vs. 비언어적)과 방식(표현적, 서술적, 도상적)으로 분류하고, 이질적 특성을 갖는 6개 범주 간 상호 대응관계를 설정함으로써, 멀티모달 환경에 적용할 수 있다. 둘째, 세분화된 감정을 분류할 수 있되, 감정 간 차별성을 가질 수 있도록 24개의 감정 명세를 선별하고, 더 섬세하게 감정을 분류할 수 있는 속성으로 강도와 극성을 설정하였다. 셋째, 텍스트에 나타난 감정 표현을 명시적으로 구분할 수 있도록, 경험자 기술 대상과 방식 언어적 자질에 관한 속성을 도입하였다. 이때 본 연구에서 제안하는 감정 온톨로지가 한국어 처리에 국한되지 않고, 다국어 처리에 활용할 수 있도록 확장성을 고려했다.

  • PDF

Knowledge Structure Analysis on Defense Research Using Text Network Analysis (텍스트 네트워크분석을 활용한 국방분야 연구논문 지식구조 분석)

  • Lee, Yong-Kyu;Yoon, Soung-woong;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.526-529
    • /
    • 2018
  • 본 연구에서는 텍스트 네트워크분석을 활용하여 국방분야 연구의 핵심 주제어와 연구주제를 분석하고 이를 통해 전체 지식구조를 파악하고자 하였다. 이를 위해 2010년부터 2017년까지의 국방대학교 학위과정 논문을 대상으로 국방분야 연구현황을 진단하고 지식구조를 구성하였다. 8년간 누적된 논문 710건의 초록을 분석하여 총 6,883개의 단어를 추출한 후, 단어의 논문 등장 빈도수와 단어간 링크수를 파레토 법칙에 따라 상위 20%의 기준으로 총 270개의 단어로 추출하였고, 컴포넌트 분석을 통해 최종 170개의 핵심 주제어를 도출하였다. 이 핵심 주제어를 통해 중심성 분석과 응집구조를 분석하여, 국방분야에 대한 총 6개의 지식구조 그룹을 도출하였다.

  • PDF

Research Paper Classification Scheme based on Word Embedding (워드 임베딩 기반 연구 논문 분류 기법)

  • Dipto, Biswas;Gil, Joon-Min
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.

English Bible Text Visualization Using Word Clouds and Dynamic Graphics Technology (단어 구름과 동적 그래픽스 기법을 이용한 영어성경 텍스트 시각화)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.373-386
    • /
    • 2014
  • A word cloud is a visualization of word frequency in a given text. The importance of each word is shown in font size or color. This plot is useful for quickly perceiving the most prominent words and for locating a word alphabetically to determine its relative prominence. With dynamic graphics, we can find the changing pattern of prominent words and their frequencies according to the changing selection of chapters in a given text. We can define the word frequency matrix. In this matrix, rows are chapters in text and columns are ranks corresponding to word frequency about the words in the text. We can draw the word frequency matrix plot with this matrix. Dynamic graphic can indicate the changing pattern of the word frequency matrix according to the changing selection of the range of ranks of words. We execute an English Bible text visualization using word clouds and dynamic graphics technology.

The Characteristics of Literary therapy through a contrast with Literature education (문학교육과의 대비를 통해 본 문학치료의 특성)

  • Cho, Eun-sang
    • Journal of Korean Classical Literature and Education
    • /
    • no.39
    • /
    • pp.5-39
    • /
    • 2018
  • This paper aims to identify the characteristics of literary therapy in relation to literature education. It also intends to clarify its distinctiveness. Literary therapy is not to teach literature. It does not deliver knowledge on agreed analyses, backgrounds and the nature of genres. Literary therapy encourages participants to fully appreciate one's thought and emotions and express them. The end goal is self-knowledge rather than the understanding of texts. Literary therapy focuses on self-knowledge through literatures as opposed to literature education which aims to encourage understandings of literature texts. In literary therapy, literature is media for personal growth facilitating self-expansion. Literature works enable participants to view oneself objectively by the means of one's responses to literature works. Literary therapy has more permissive viewpoints on recipients' response to literature texts than literature education. In addition, the subject of literary therapy is more unique and individualistic.

Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes (다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석)

  • Kim, Namsoo;Lee, Suan;Jo, Sunhwa;Kim, Jinho
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.

Korean Text Automatic Summarization using Semantically Expanded Sentence Similarity (의미적으로 확장된 문장 간 유사도를 이용한 한국어 텍스트 자동 요약)

  • Kim, Heechan;Lee, Soowon
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.841-844
    • /
    • 2014
  • 텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.

A Study on Automatic Data Tagging for Text-based Training Data Construction (텍스트 기반의 훈련 데이터 구축을 위한 자동 데이터 태깅 작업에 대한 연구)

  • Kim, NaYun;So, Hyeryung;Park, Joonho
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1008-1009
    • /
    • 2020
  • 텍스트 기반의 훈련 데이터는 데이터를 수집한 이후에 각 문자별로 태깅 작업이 필요하다. 말뭉치(Corpus)는 언어학에서 주로 이루고 있는 텍스트 집합이다. 말뭉치는 각 단어의 품사 표기에 대한 정보가 태그 형태로 되어 있다. 본 연구에서는 한국어 기반의 태깅 작업을 연구했으며, 기본 한국어 말뭉치가 아닌 기업이나 연구 기관에서 데이터를 수집하여 말뭉치나 별도 학습 데이터를 구축하기 위한 자동 태깅 방법에 대해 알아본다.