• Title/Summary/Keyword: 텍스트 연구

Search Result 3,494, Processing Time 0.033 seconds

Analysis of Policy Trends in Convergence Research and Development Using Unstructured Text Data (비정형 텍스트 데이터를 활용한 융합연구개발의 정책 동향 분석 )

  • Jiye Rhee;JaeEun Shin
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.177-191
    • /
    • 2024
  • This study aims to analyze policy changes over time by conducting a textual analysis of the basic plan for activating convergence research and development. By examining the basic plan for convergence research development, this study looks into changes in convergence research policies and suggests future directions, thereby exploring strategic approaches that can contribute to the advancement of science and technology and societal development in our country. In particular, it sought to understand the policy changes proposed by the basic plan by identifying the relevance and trends of topics over time. Various analytical methods such as TF-IDF analysis, topic modeling (LDA), and network (CONCOR) analysis were used to identify the key topics of each period and grasp the trends in policy changes. The analysis revealed clustering of topics by period and changes in topics, providing directions for the convergence research ecosystem and addressing pressing issues. The results of this study are expected to provide important insights to various stakeholders such as governments, businesses, academia, and research institutions, offering new insights into the changes in policies proposed by previous basic plans from a macroscopic perspective.

The Methodological Standpoint and the Meaning of "Discourse Study" in Social Policy Research (사회정책연구에 있어 담론연구의 위상과 의미)

  • Woo, Ah-Young
    • Korean Journal of Social Welfare
    • /
    • v.61 no.2
    • /
    • pp.247-276
    • /
    • 2009
  • The purpose of this essay is to explore the methodological standpoint and the meaning of 'Discourse Analysis' in policy science. I discussed it in three dimensions including: 1) the ontological point of view, 2) the epistemological perspective, and 3) researcher's position in policy research. 1) From the ontological standpoint, I explained the policy as a text, context, discourse, and ideology, that is focused on being constructed by the formative power of language. 2) The ontological standpoint produced "the argumentative turn" in the policy analysis, and many policy analysts emphasize the argumentative process of policy making and evaluation. This argumentation process includes the interpretative and critical viewpoints as well as the normative and ethical characteristics of policies in the discourse analysis. We should reexamine reality critically because discourse is ultimately influenced by the prevailing cultural and social norms. Therefore, an interpretative and critical viewpoint is an epistemological perspective in the discourse analysis. This critical approach creates an awareness of the limitations on our thinking under the particular major discourse, and requires the self-reflection within and beyond the discourse. This process leads to the human emancipation. 3) In order to achieve this emancipation, the last approach suggests that we need to scrutinize "the subject" as a researcher, who is also influenced and subjectified by the major discourse and, thus must deconstruct his or herself. Last but not least, we should emphasize the researcher's role as a listener of the minor voice(discourse) and even the silence of the clients.

  • PDF

Using Text-mining Method to Identify Research Trends of Freshwater Exotic Species in Korea (텍스트마이닝 (text-mining) 기법을 이용한 국내 담수외래종 연구동향 파악)

  • Do, Yuno;Ko, Eui-Jeong;Kim, Young-Min;Kim, Hyo-Gyeom;Joo, Gea-Jae;Kim, Ji Yoon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • We identified research trends for freshwater exotic species in South Korea using text mining methods in conjunction with bibliometric analysis. We searched scientific and common names of freshwater exotic species as searching keywords including 1 mammal species, 3 amphibian-reptile species, 11 fish species, 2 aquatic plant species. A total of 245 articles including research articles and abstracts of conference proceedings published by 56 academic societies and institutes were collected from scientific article databases. The search keywords used were the common names for the exotic species. The $20^{th}$ century (1900's) saw the number of articles increase; however, during the early $21^{st}$ century (2000's) the number of published articles decreased slowly. The number of articles focusing on physiological and embryological research was significantly greater than taxonomic and ecological studies. Rainbow trout and Nile tilapia were the main research topic, specifically physiological and embryological research associated with the aquaculture of these species. Ecological studies were only conducted on the distribution and effect of large-mouth bass and nutria. The ecological risk associated with freshwater exotic species has been expressed yet the scientific information might be insufficient to remove doubt about ecological issues as expressed by interested by individuals and policy makers due to bias in research topics with respect to freshwater exotic species. The research topics of freshwater exotic species would have to diversify to effectively manage freshwater exotic species.

Military Security Policy Research Using Big Data and Text Mining (빅데이터와 텍스트마이닝 기법을 활용한 군사보안정책 탐구)

  • Kim, Doo Hwan;Park, Ho Jeong
    • Convergence Security Journal
    • /
    • v.19 no.4
    • /
    • pp.23-34
    • /
    • 2019
  • This study utilized big data, one of the new technologies of the Fourth Industrial Revolution as a policy direction study related to the military security of the Army. By utilizing Text mining and analyzing military security trends in domestic and foreign papers, it will be able to set policy directions and reduce trial and error. In this study, we found differences in domestic and international studies on military sucurity. At first, Domestic research has shown that in the course of the fourth industrial revolution, there is a strong interest in technological security, such as IT technology in security and cyber security in North Korea. On the other hand, Foreign research confirmed that policies are being studied in such a way that military sucurity is needed at the level of cooperation between countries and that it can contribute to world peace. Various academic policy studies have been underway in terms of determining world peace and security levels, not just security levels. It contrasted in our immediate confrontation with North Korea for decades but suggest complementary measures that cannot be overlooked from a grand perspective. Conclusionally, the direction of academic research in domestic and foreign should be done in macro perspective under national network cooperation, not just technology sucurity research, recognizing that military security is a policy product that should be studied in a security system between countries.

Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis (토픽 모델링 기반의 국내외 공공데이터 연구 동향 비교 분석)

  • Park, Dae-Yeong;Kim, Deok-Hyeon;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • With the recent 4th Industrial Revolution, the growth and value of big data are continuously increasing, and the government is also actively making efforts to open and utilize public data. However, the situation still does not reach the level of demand for public data use by citizens, At this point, it is necessary to identify research trends in the public data field and seek directions for development. In this study, in order to understand the research trends related to public data, the analysis was performed using topic modeling, which is mainly used in text mining techniques. To this end, we collected papers containing keywords of 'Public data' among domestic and foreign research papers (1,437 domestically, 9,607 overseas) and performed topic modeling based on the LDA algorithm, and compared domestic and foreign public data research trends. After analysis, policy implications were presented. Looking at the time series by topic, research in the fields of 'personal information protection', 'public data management', and 'urban environment' has increased in Korea. Overseas, it was confirmed that research in the fields of 'urban policy', 'cell biology', 'deep learning', and 'cloud·security' is active.

A Comparative Study on the Social Awareness of Metaverse in Korea and China: Using Big Data Analysis (한국과 중국의 메타버스에 관한 사회적 인식의 비교연구: 빅데이터 분석의 활용 )

  • Ki-youn Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.71-86
    • /
    • 2023
  • The purpose of this exploratory study is to compare the differences in public perceptual characteristics of Korean and Chinese societies regarding the metaverse using big data analysis. Due to the environmental impact of the COVID-19 pandemic, technological progress, and the expansion of new consumer bases such as generation Z and Alpha, the world's interest in the metaverse is drawing attention, and related academic studies have been also in full swing from 2021. In particular, Korea and China have emerged as major leading countries in the metaverse industry. It is a timely research question to discover the difference in social awareness using big data accumulated in both countries at a time when the amount of mentions on the metaverse has skyrocketed. The analysis technique identifies the importance of key words by analyzing word frequency, N-gram, and TF-IDF of clean data through text mining analysis, and analyzes the density and centrality of semantic networks to determine the strength of connection between words and their semantic relevance. Python 3.9 Anaconda data science platform 3 and Textom 6 versions were used, and UCINET 6.759 analysis and visualization were performed for semantic network analysis and structural CONCOR analysis. As a result, four blocks, each of which are similar word groups, were driven. These blocks represent different perspectives that reflect the types of social perceptions of the metaverse in both countries. Studies on the metaverse are increasing, but studies on comparative research approaches between countries from a cross-cultural aspect have not yet been conducted. At this point, as a preceding study, this study will be able to provide theoretical grounds and meaningful insights to future studies.

Exploratory Study on the Application of Blockchain for ESG Management in the Distribution Industry (유통업계 ESG 경영을 위한 블록체인 도입 탐색적 연구)

  • Yeji Choi;Jaewook Byun;Jiwon Moon;Hangbae Chang
    • Knowledge Management Research
    • /
    • v.24 no.3
    • /
    • pp.217-237
    • /
    • 2023
  • Recently, in the face of successive and unexpected global economic risks, ESG(Environmental, Social, and Governance) management has risen as an essential survival strategy for businesses. Particularly, the supply chain disruptions due to the COVID-19 pandemic have added to the uncertainty of risks, heightening the importance of ESG management in the distribution industry. In this context, the role of blockchain technology in strengthening and managing the connection between the distribution industry and ESG management has become increasingly significant. While there have been extensive proposals for business models that integrate blockchain technology into distribution, few studies have specifically focused on the feasibility and effectiveness of applying blockchain to ESG management in this field. Therefore, this study analyzed the relationship between blockchain and ESG management in the distribution industry by employing association analysis, a text mining technique, on Korean academic research. Through this, the study confirmed the possibility of implementing blockchain in the distribution industry's ESG management and presented keywords to guide future research directions. The findings obtained from this study are expected to be utilized as foundational research for future studies in constructing blockchain-based business models for ESG management in the distribution industry.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Issue tracking and voting rate prediction for 19th Korean president election candidates (댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측)

  • Seo, Dae-Ho;Kim, Ji-Ho;Kim, Chang-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.199-219
    • /
    • 2018
  • With the everyday use of the Internet and the spread of various smart devices, users have been able to communicate in real time and the existing communication style has changed. Due to the change of the information subject by the Internet, data became more massive and caused the very large information called big data. These Big Data are seen as a new opportunity to understand social issues. In particular, text mining explores patterns using unstructured text data to find meaningful information. Since text data exists in various places such as newspaper, book, and web, the amount of data is very diverse and large, so it is suitable for understanding social reality. In recent years, there has been an increasing number of attempts to analyze texts from web such as SNS and blogs where the public can communicate freely. It is recognized as a useful method to grasp public opinion immediately so it can be used for political, social and cultural issue research. Text mining has received much attention in order to investigate the public's reputation for candidates, and to predict the voting rate instead of the polling. This is because many people question the credibility of the survey. Also, People tend to refuse or reveal their real intention when they are asked to respond to the poll. This study collected comments from the largest Internet portal site in Korea and conducted research on the 19th Korean presidential election in 2017. We collected 226,447 comments from April 29, 2017 to May 7, 2017, which includes the prohibition period of public opinion polls just prior to the presidential election day. We analyzed frequencies, associative emotional words, topic emotions, and candidate voting rates. By frequency analysis, we identified the words that are the most important issues per day. Particularly, according to the result of the presidential debate, it was seen that the candidate who became an issue was located at the top of the frequency analysis. By the analysis of associative emotional words, we were able to identify issues most relevant to each candidate. The topic emotion analysis was used to identify each candidate's topic and to express the emotions of the public on the topics. Finally, we estimated the voting rate by combining the volume of comments and sentiment score. By doing above, we explored the issues for each candidate and predicted the voting rate. The analysis showed that news comments is an effective tool for tracking the issue of presidential candidates and for predicting the voting rate. Particularly, this study showed issues per day and quantitative index for sentiment. Also it predicted voting rate for each candidate and precisely matched the ranking of the top five candidates. Each candidate will be able to objectively grasp public opinion and reflect it to the election strategy. Candidates can use positive issues more actively on election strategies, and try to correct negative issues. Particularly, candidates should be aware that they can get severe damage to their reputation if they face a moral problem. Voters can objectively look at issues and public opinion about each candidate and make more informed decisions when voting. If they refer to the results of this study before voting, they will be able to see the opinions of the public from the Big Data, and vote for a candidate with a more objective perspective. If the candidates have a campaign with reference to Big Data Analysis, the public will be more active on the web, recognizing that their wants are being reflected. The way of expressing their political views can be done in various web places. This can contribute to the act of political participation by the people.

The Aspects of Small Group Decision-making Process based on Reading News Reports: Focused on Climate Change related Socio-scientific Issues Activity (신문기사 읽기를 활용한 소집단 의사결정 과정 양상 -기후변화 관련 사회적 논쟁 활동을 중심으로-)

  • Kim, Jong-Uk;Gwak, Je-Yeon;Kwon, Ji-Yeon;Ha, Yoon-Hee;Lee, Jeong-A;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.203-217
    • /
    • 2018
  • The research objective of this study is to analyze the aspects of small group decision-making process based on reading news reports in the context of the socio-scientific issues (SSI) activity related to climate change. Twenty-two high school students from Gyeonggi Province, South Korea, were asked to read two news reports on the UN climate change conferences and take a stance on joining the Paris Agreement both as an individual and as a small group. The news reports were analyzed in terms of genre, discourse, and style adapting the critical discourse analysis (CDA) and the decision-making processes of the small groups were examined on recognizing a problem and evaluating alternatives and decisions. The results from analyzing the news reports denoted that the Paris agreement is not only related to finding ideal solutions to climate change, but rather, connected to political or economic interests and power relationship. In the stage of recognizing a problem, meanwhile, different frames which students recognize the Paris agreement and discourses in the foreground of the news reports were the critical causes in terms of identifying the problem. In the stage of evaluating alternatives and decisions, the equity and fairness were the criteria for the small group discussions. This study implies the necessity of the scientific literacy instruction to develop the ability to critical reading in the context of the SSI.