• 제목/요약/키워드: 텍스트 데이터

검색결과 1,797건 처리시간 0.028초

프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성 (Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning)

  • 이은찬;안상태
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF

OCR 시스템에서 YOLOv4를 활용한 텍스트 이미지 전처리 연구 (A Study on Preprocessing Image Text Using Yolov4 in OCR System)

  • 김하윤;유상인;주혜경;최여진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.964-966
    • /
    • 2022
  • 본 연구는 유료 OCR 서비스를 이용하여 야외 촬영 이미지의 텍스트를 검출하는 프로젝트에서 야외 촬영 텍스트를 학습시킨 Yolov4 모델을 통한 전처리 작업을 제안한다. 텍스트 감지를 통한 이미지 텍스트 전처리 진행은 불필요한 OCR 실행을 줄여 리소스를 절약하고 유료 서비스의 경우 비용 절감 효과까지 도모할 수 있다는 장점이 있다.

사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석 (Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles)

  • 이수정;최두영
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.118-127
    • /
    • 2020
  • 본 연구는 최근 사회과학에서 실시되고 있는 양적 텍스트 분석의 흐름과 분석을 실시함에 있어 주의해야 할 사례를 포함하여 기술 하였다. 특히, 2017년부터 2019년까지 3년간 학술지와 언론에서 사용된 "이주", "이민" 키워드를 기반으로 사례연구를 실시하였다. 이를 위해 최근 사회과학분야에서 주목 받는 자연어 처리 기술(NLP)를 이용한 양적 텍스트 분석 (Quantitate text analysis)을 사용하였다. 양적 텍스트 분석은 문서를 구조적 데이터로 변환하여, 가설의 발견 및 검증을 실시하는 데이터 과학의 영역으로, 데이터의 모델링 및 가시화 등이 가능하고, 특히 비구조화 된 데이터를 구조화할 수 있다는 점에서 사회과학 분야에 많이 도입하였다. 따라서 본 연구는 양적 텍스트 분석을 통해 "이주", "이민"을 키워드로 한 연구 및 언론 기사에 대한 통계 분석을 실시하고 도출된 결론에 대한 해석을 실시하였다.

텍스트 마이닝을 활용한 세대별 키워드 빅데이터 분석: 네이트판 10대·20대·30대 게시판을 중심으로 (Bigdata Analysis on Keyword by Generations through Text Mining: Focused on Board of Nate Pann in 10s, 20s, 30s)

  • 정백;배성원;황보유정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.513-516
    • /
    • 2022
  • 본 논문에서는 텍스트 마이닝 기법을 이용하여 MZ 세대를 이해하는 키워드를 도출하고자 한다. MZ 세대의 비중이 높아지면서, MZ 세대를 분석하려고 하는 많은 연구들이 수행되고 있다. 이에 본 연구에서는 MZ 세대를 이해하기 위하여 네이트 판의 연령별 게시판 크롤링을 통해 빅데이터를 수집하였다. 그리고 텍스트 마이닝 기법을 활용하여 10대, 20대, 30대의 각각의 키워드를 도출할 수 있었다. 본 논문에서 도출된 키워드는 이는 MZ 세대를 이해하는데 중요한 키워드로 볼 수 있을 것이다. 향후 연구로는 MZ 세대와 기성 세대를 비교하기 위하여 추가 크롤링을 통해 세대 간 비교 연구를 수행하고자 한다.

  • PDF

연구 동향 분석을 위한 텍스트 마이닝 기반 GPT 활용 기법 (Text mining based GPT utilization technique for research trend analysis)

  • 하정훈;최봉준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.369-370
    • /
    • 2023
  • 새로운 연구를 시작하기 위해서는 과거의 연구 동향을 분석해야 한다. 이를 위해 많은 양의 과거 연구 데이터를 조사해야 하는데, 모든 데이터를 직접 분류하는 방법은 많은 시간과 노력이 필요하기 때문에 비효율적이며, 텍스트 마이닝 기법을 활용한 키워드분석만으로는 연구 동향을 이해하기에 어려움이 존재한다. 이러한 전통적인 키워드 추출 방법의 한계점을 보완하기 위해 본 논문에서는 텍스트 마이닝 기반 GPT 활용 기법을 제안한다. 본 연구에서는 특정 도메인에 대해 텍스트 마이닝 기법을 활용하여 키워드를 추출하고, 이러한 키워드를 해당 도메인의 데이터로 미세 조정(fine-tuning)된 GPT의 입력으로 사용한다. GPT 결과로 생성된 문장을 텍스트 마이닝으로 나온 결과와 비교 분석한다. 이를 통해 연구 분야의 동향 분석을 보다 쉽게 할 수 있을 것으로 기대된다.

  • PDF

텍스트 마이닝 통합 애플리케이션 개발: KoALA (Application Development for Text Mining: KoALA)

  • 전병진;최윤진;김희웅
    • 경영정보학연구
    • /
    • 제21권2호
    • /
    • pp.117-137
    • /
    • 2019
  • 빅데이터 시대를 맞아 다양한 도메인에서 수없이 많은 데이터들이 생산되면서 데이터 사이언스가 대중화 되었고, 데이터의 힘이 곧 경쟁력인 시대가 되었다. 특히 전 세계 데이터의 80% 이상을 차지하는 비정형 데이터에 대한 관심이 부각되고 있다. 소셜 미디어의 발전과 더불어 비정형 데이터의 대부분은 텍스트 데이터의 형태로 발생하고 있으며, 마케팅, 금융, 유통 등 다양한 분야에서 중요한 역할을 하고 있다. 하지만 이러한 소셜 미디어를 활용한 텍스트 마이닝은 수치형 데이터를 활용한 데이터 마이닝 분야에 비해 접근이 어렵고 복잡해 기대에 비해 그 활용도가 높지 못한 실정이다. 이에 본 연구는 프로그래밍 언어나 고사양 하드웨어나 솔루션에 의존하지 않고, 쉽고 간편한 소셜 미디어 텍스트 마이닝을 위한 통합 애플리케이션으로 Korean Natural Language Application(KoALA)을 개발하고자 한다. KoALA는 소셜 미디어 텍스트 마이닝에 특화된 애플리케이션으로, 한글, 영문을 가리지 않고 분석 가능한 통합 애플리케이션이다. 데이터 수집에서 전처리, 분석, 그리고 시각화에 이르는 전 과정을 처리해준다. 본 논문에서는 디자인 사이언스(design science) 방법론을 활용해 KoALA 애플리케이션을 디자인, 구현, 적용하는 과정에 대해서 다룬다. 마지막으로 블록체인 비즈니스 관련 사례를 들어 KoALA의 실제 활용방안에 대해서 다룬다. 본 논문을 통해 소셜 미디어 텍스트 마이닝의 대중화와 다양한 도메인에서 텍스트 마이닝의 실무적, 학술적 활용을 기대해 본다.

불균형 텍스트 데이터의 변수 선택에 있어서의 카이제곱통계량과 정보이득의 특징 (Properties of chi-square statistic and information gain for feature selection of imbalanced text data)

  • 문혜인;손원
    • 응용통계연구
    • /
    • 제35권4호
    • /
    • pp.469-484
    • /
    • 2022
  • 텍스트 데이터는 일반적으로 많은 단어로 이루어져 있으므로 변수의 수가 매우 많은 고차원 데이터에 해당된다. 이러한 고차원 데이터에서는 계산 효율성과 통계분석의 정확성을 높이기 위해 많은 변수 중 중요한 변수를 선택하기 위한 절차를 거치는 경우가 많다. 텍스트 데이터에서도 많은 단어 중 중요한 단어를 선택하기 위해 여러가지 방법들이 사용되고 있다. 이 연구에서는 단어 선택을 위한 대표적인 필터링 방법인 카이제곱통계량과 정보이득의 공통점과 차이점을 살펴보고 실제 텍스트 데이터에서 이 단어선택 방법들의 성질을 확인해보았다. 카이제곱통계량과 정보이득은 비음성, 볼록성 등의 성질을 공유하지만 불균형 텍스트 데이터에서 카이제곱통계량이 양변수 위주로 단어를 선택하는 반면, 정보이득은 음변수도 상대적으로 많이 선택하는 경향이 있음을 확인하였다.

한국어 뉴스 분석 성능 향상을 위한 번역 전처리 기법 (Translation Pre-processing Technique for Improving Analysis Performance of Korean News)

  • 이지민;정다운;구영현;유성준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.619-623
    • /
    • 2020
  • 한국어는 교착어로 1개 이상의 형태소가 단어를 이루고 있기 때문에 텍스트 분석 시 형태소를 분리하는 작업이 필요하다. 자연어를 처리하는 대부분의 알고리즘은 영미권에서 만들어졌고 영어는 굴절어로 특정 경우를 제외하고 일반적으로 하나의 형태소가 단어를 구성하는 구조이다. 그리고 영문은 주로 띄어쓰기 위주로 토큰화가 진행되기 때문에 텍스트 분석이 한국어에 비해 복잡함이 떨어지는 편이다. 이러한 이유들로 인해 한국어 텍스트 분석은 영문 텍스트 분석에 비해 한계점이 있다고 알려져 있다. 한국어 텍스트 분석의 성능 향상을 위해 본 논문에서는 번역 전처리 기법을 제안한다. 번역 전처리 기법이란 원본인 한국어 텍스트를 영문으로 번역하고 전처리를 거친 뒤 분석된 결과를 재번역하는 것이다. 본 논문에서는 한국어 뉴스 기사 데이터와 번역 전처리 기법이 적용된 영문 뉴스 텍스트 데이터를 사용했다. 그리고 주제어 역할을 하는 키워드를 단어 간의 유사도를 계산하는 알고리즘인 Word2Vec(Word to Vector)을 통해 유사 단어를 추출했다. 이렇게 도출된 유사 단어를 텍스트 분석 전문가 대상으로 성능 비교 투표를 진행했을 때, 한국어 뉴스보다 번역 전처리 기법이 적용된 영문 뉴스가 약 3배의 득표 차이로 의미있는 결과를 도출했다.

  • PDF

위키피디어 기반 개념 공간을 가지는 시멘틱 텍스트 모델 (A Semantic Text Model with Wikipedia-based Concept Space)

  • 김한준;장재영
    • 한국전자거래학회지
    • /
    • 제19권3호
    • /
    • pp.107-123
    • /
    • 2014
  • 텍스트마이닝 연구의 기본적인 난제는 기존 텍스트 표현모델이 자연어 문장으로 기술된 텍스트 데이터로부터 의미 또는 개념 정보를 표현하지 않는데 기인한다. 기존 텍스트 표현모델인 벡터공간 모델(vector space model), 불리언 모델(Boolean model), 통계 모델(statistical model), 텐서공간 모델(tensor space model) 등은 'Bag-of-Words' 방식에 바탕을 두고 있다. 이러한 텍스트 모델들은 텍스트에 포함된 단어와 그것의 출현 횟수만으로 텍스트를 표현하므로, 단어의 함축 의미, 단어의 순서 및 텍스트의 구조를 전혀 표현하지 못한다. 대부분의 텍스트 마이닝 기술은 대상 문서를 'Bag-of-Words' 방식의 텍스트 모델로 표현함을 전제로 하여 발전하여 왔다. 하지만 오늘날 빅데이터 시대를 맞이하여 방대한 규모의 텍스트 데이터를 보다 정밀하게 분석할 수 있는 새로운 패러다임의 표현모델을 요구하고 있다. 본 논문에서 제안하는 텍스트 표현모델은 개념공간을 문서 및 단어와 동등한 매핑 공간으로 상정하여, 그 세 가지 공간에 대한 연관 관계를 모두 표현한다. 개념공간의 구성을 위해서 위키피디어 데이터를 활용하며, 하나의 개념은 하나의 위키피디어 페이지로부터 정의된다. 결과적으로 주어진 텍스트 문서집합을 의미적으로 해석이 가능한 3차 텐서(3-order tensor)로 표현하게 되며, 따라서 제안 모델을 텍스트 큐보이드 모델이라 명명한다. 20Newsgroup 문서집합을 사용하여 문서 및 개념 수준의 클러스터링 정확도를 평가함으로써, 제안 모델이 'Bag-of-Word' 방식의 대표적 모델인 벡터공간 모델에 비해 우수함을 보인다.

텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안 (Detecting Spam Data for Securing the Reliability of Text Analysis)

  • 현윤진;김남규
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.493-504
    • /
    • 2017
  • 최근 뉴스, 블로그, 소셜미디어 등을 통해 방대한 양의 비정형 텍스트 데이터가 쏟아져 나오고 있다. 이러한 비정형 텍스트 데이터는 풍부한 정보 및 의견을 거의 실시간으로 반영하고 있다는 측면에서 그 활용도가 매우 높아, 학계는 물론 산업계에서도 분석 수요가 증가하고 있다. 하지만 텍스트 데이터의 유용성이 증가함과 동시에 이러한 텍스트 데이터를 왜곡하여 특정 목적을 달성하려는 시도도 늘어나고 있다. 이러한 스팸성 텍스트 데이터의 증가는 방대한 정보 가운데 필요한 정보를 획득하는 일을 더욱 어렵게 만드는 것은 물론, 정보 자체 및 정보 제공 매체에 대한 신뢰도를 떨어뜨리는 현상을 초래하게 된다. 따라서 원본 데이터로부터 스팸성 데이터를 식별하여 제거함으로써, 정보의 신뢰성 및 분석 결과의 품질을 제고하기 위한 노력이 반드시 필요하다. 이러한 목적으로 스팸을 식별하기 위한 연구가 오피니언 스팸 탐지, 스팸 이메일 검출, 웹 스팸 탐지 등의 분야에서 매우 활발하게 수행되었다. 본 연구에서는 스팸 식별을 위한 기존의 연구 동향을 자세히 소개하고, 블로그 정보의 신뢰성 향상을 위한 방안 중 하나로 블로그의 스팸 태그를 식별하기 위한 방안을 제안한다.