• 제목/요약/키워드: 텍스트 기반 질의응답

검색결과 37건 처리시간 0.029초

FAQ 분류 성능 향상을 위한 클래스 일치 여부 결합 학습 모델 (Jointly learning class coincidence classification for FAQ classification)

  • 양동일;함진아;이강욱;이지연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.12-17
    • /
    • 2019
  • FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.

  • PDF

동영상 기반 디자인 지식 공유 시스템 개발 (The Development of Video Based System for Sharing Design Knowledge)

  • 한현영;박우영;이준호;이상용
    • 디지털융복합연구
    • /
    • 제15권3호
    • /
    • pp.313-318
    • /
    • 2017
  • PhotoShop 등과 같은 디자인 관련 소프트웨어의 사용자들은 관련 지식에 관하여 알고 싶을 경우, 일반적으로 인터넷을 검색하게 된다. 그러나 인터넷에서 원하는 디자인 관련 지식만을 검색하기는 매우 어려운 실정이다. 왜냐하면 기존의 지식 공유 시스템들은 다루는 분야가 광범위하고, 디자인에 특화된 다양한 형태의 질문 및 답변, 지식 거래 등을 제공하는 곳은 거의 없기 때문이다. 본 논문에서는 디자인 지식의 특성을 반영하여 텍스트 뿐만 아니라 이미지, 동영상 등을 통한 자유로운 질의 응답 기능, 강의 기능, 지식거래 기능 등을 제공하는 동영상 기반 디자인 지식 공유 시스템을 개발하였다. 본 시스템을 이용하여 디자인 지식을 공유함으로써 제품 경쟁력 확보에 기여할 수 있을 것으로 기대된다. 향후 본 시스템은 디자인 지식뿐만 아니라 다양한 지식을 공유할 수 있는 프레임으로 확대가 필요할 것이다.

빅데이터 기반 음성언어 처리 기술 (Big data for Speech and Language Processing)

  • 나승훈;정호영;양성일;김창현;김영길
    • 전자통신동향분석
    • /
    • 제28권1호
    • /
    • pp.52-61
    • /
    • 2013
  • 음성언어 처리 분야는 인간의 자연어 발화를 컴퓨터가 자동으로 이해하고 처리하는 알고리즘을 연구하는 분야로, 자동 통번역, Siri와 같은 음성 대화 시스템, 차세대 인터페이스, 질의 응답 시스템 등 다양한 응용군을 포함한다. 특히, 음성언어 처리 기술은, 최근 빅데이터(big data) 시대를 맞이하여, 방대한 음성/텍스트 정보를 처리하기 위한 필수 기술로 각광받고 있다. 한편, 빅데이터는 그 자체가 거대한 말뭉치 데이터로서 음성언어 처리 기술의 성능을 향상시키는 주된 리소스가 된다. 이에 따라, 최근 빅데이터를 이용하여 음성언어 처리 기술의 성능을 개선시키고자 하는 연구가 활발히 진행되고 있는데, 본고에서는 이들 연구의 배경 및 연구 동향들을 소개하기로 한다.

  • PDF

거대 언어 모델을 활용한 한국어 제로샷 관계 추출 비교 연구 (A Comparative Study on Korean Zero-shot Relation Extraction using a Large Language Model)

  • 김진성;김경민;박기남;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.648-653
    • /
    • 2023
  • 관계 추출 태스크는 주어진 텍스트로부터 두 개체 간의 적절한 관계를 추론하는 작업이며, 지식 베이스 구축 및 질의응답과 같은 응용 태스크의 기반이 된다. 최근 자연어처리 분야 전반에서 생성형 거대 언어모델의 내재 지식을 활용하여 뛰어난 성능을 성취하면서, 대표적인 정보 추출 태스크인 관계 추출에서 역시 이를 적극적으로 활용 가능한 방안에 대한 탐구가 필요하다. 특히, 실 세계의 추론 환경과의 유사성에서 기인하는 저자원 특히, 제로샷 환경에서의 관계 추출 연구의 중요성에 기반하여, 효과적인 프롬프팅 기법의 적용이 유의미함을 많은 기존 연구에서 증명해왔다. 따라서, 본 연구는 한국어 관계 추출 분야에서 거대 언어모델에 다각적인 프롬프팅 기법을 활용하여 제로샷 환경에서의 추론에 관한 비교 연구를 진행함으로써, 추후 한국어 관계 추출을 위한 최적의 거대 언어모델 프롬프팅 기법 심화 연구의 기반을 제공하고자 한다. 특히, 상식 추론 등의 도전적인 타 태스크에서 큰 성능 개선을 보인 사고의 연쇄(Chain-of-Thought) 및 자가 개선(Self-Refine)을 포함한 세 가지 프롬프팅 기법을 한국어 관계 추출에 도입하여 양적/질적으로 비교 분석을 제공한다. 실험 결과에 따르면, 사고의 연쇄 및 자가 개선 기법 보다 일반적인 태스크 지시 등이 포함된 프롬프팅이 정량적으로 가장 좋은 제로샷 성능을 보인다. 그러나, 이는 두 방법의 한계를 지적하는 것이 아닌, 한국어 관계 추출 태스크에의 최적화의 필요성을 암시한다고 해석 가능하며, 추후 이러한 방법론들을 발전시키는 여러 실험적 연구에 의해 개선될 것으로 판단된다.

  • PDF

과학 기술 문헌 분석을 위한 기계학습 기반 범용 전문용어 인식 시스템 (Terminology Recognition System based on Machine Learning for Scientific Document Analysis)

  • 최윤수;송사광;전홍우;정창후;최성필
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.329-338
    • /
    • 2011
  • 문헌에서의 전문용어 인식 연구는 정보검색, 정보추출, 시맨틱 웹, 질의응답 분야 등의 연구를 위한 선행 연구로서, 지금까지 대부분 특정 분야, 특히 생의학 분야에서 집중되어 연구되어 왔다. 그러나 기존 연구들이 특정 도메인 또는 문헌 내부 통계 정보를 활용함으로써 범용적인 전문용어 인식에 한계점을 보여 왔기 때문에, 본 연구에서는 웹 검색 결과와 사전, 후보용어의 문형 특징 등을 활용하는 기계 학습 기반 범용 전문용어 인식 방법을 제안하였다. 제안한 방법을 문헌의 지역 통계 정보를 사용하는 방법(C-value)과 비교 실험하여 80.8%의 F-값으로 6.5%의 성능향상을 보였다. 다양한 응집도 자질들을 접목한 두 번째 실험에서는 Normalized Google Distance 방법과 접목한 방식이 F-값 81.8%의 성능으로 최고의 성능을 나타냈다. 기계 학습 방법으로는 로지스틱 회귀분석, C4.5, SVMs 등을 적용하였는데, 일반적으로 이진 분류에 좋은 성능을 보이는 SVMs과 로지스틱 회귀분석 방법보다 결정 트리 방식의 C4.5가 전반적으로 좋은 성능을 보였다.

딥러닝 중심의 자연어 처리 기술 현황 분석 (Analysis of the Status of Natural Language Processing Technology Based on Deep Learning)

  • 박상언
    • 한국빅데이터학회지
    • /
    • 제6권1호
    • /
    • pp.63-81
    • /
    • 2021
  • 자연어 처리는 최근 기계학습 및 딥러닝 기술의 발전과 적용으로 성능이 빠르게 향상되고 있으며, 이로 인해 활용 분야도 넓어지고 있다. 특히 비정형 텍스트 데이터에 대한 분석 요구가 증가함에 따라 자연어 처리에 대한 관심도 더욱 높아지고 있다. 그러나 자연어 전처리 과정 및 기계학습과 딥러닝 이론의 복잡함과 어려움으로 인해 아직도 자연어 처리 활용의 장벽이 높은 편이다. 본 논문에서는 자연어 처리의 전반적인 이해를 위해 현재 활발히 연구되고 있는 자연어 처리의 주요 분야와 기계학습 및 딥러닝을 중심으로 한 주요 기술의 현황에 대해 살펴봄으로써, 보다 쉽게 자연어 처리에 대해 이해하고 활용할 수 있는 기반을 제공하고자 한다. 이를 위해 인공지능 기술 분류체계의 변화를 통해 자연어 처리의 비중 및 변화 과정을 살펴보았으며, 기계학습과 딥러닝을 기반으로 한 자연어 처리 주요 분야를 언어 모델, 문서 분류, 문서 생성, 문서 요약, 질의응답, 기계번역으로 나누어 정리하고 각 분야에서 가장 뛰어난 성능을 보이는 모형들을 살펴보았다. 그리고, 자연어 처리에서 활용되고 있는 주요 딥러닝 모형들에 대해 정리하고 자연어 처리 분야에서 사용되는 데이터셋과 성능평가를 위한 평가지표에 대해 정리하였다. 본 논문을 통해, 자연어 처리를 자신의 분야에서 다양한 목적으로 활용하고자 하는 연구자들이 자연어 처리의 전반적인 기술 현황에 대해 이해하고, 자연어 처리의 주요 기술 분야와 주로 사용되는 딥러닝 모형 및 데이터셋과 평가지표에 대해 보다 쉽게 파악할 수 있기를 기대한다.

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.