• Title/Summary/Keyword: 텍스트 구성

Search Result 865, Processing Time 0.031 seconds

Text Visualization and Concordance Search Using Gutenberg Project Text Data (구텐베르그 프로젝트 텍스트 데이터를 활용한 시각화 및 용례 검색)

  • Kim, Dongsung;Shin, Yeonsu;Lee, Jian;Yu, Jimin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.175-178
    • /
    • 2017
  • 본 연구는 거시적 빅데이터 인문학과 미시적 언어 텍스트 검색 시스템을 구축하고, 이를 통해서 언어를 통한 문화의 역동적 변화를 시간적 순서에 따라 살펴보고자 한다. 연구의 최종적인 목표는 문화도 생물체처럼 변화하는 존재라 여기고 그 구성요소들을 연구한다는 뜻인 '문화체학(文化體學; Culturomics)'과 같은 '인문학 + 정보과학 + 사회과학' 등등의 다학문간의 융합적 연구에 있다. 이 시스템을 통해서 인류 역사의 기록인 텍스트 빅데이터를 통한 인문학적 성찰을 시각화하고 있다. 이러한 구글의 업적은 인문학과 정보기술의 융합을 통해서 인문학 자체의 지평을 넓히고, 사회과학을 변형시키고, 산업과 상아탑 사이의 관계를 재조정하는데 있다.

  • PDF

Text Visualization and Concordance Search Using Gutenberg Project Text Data (구텐베르그 프로젝트 텍스트 데이터를 활용한 시각화 및 용례 검색)

  • Kim, Dongsung;Shin, Yeonsu;Lee, Jian;Yu, Jimin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.175-178
    • /
    • 2017
  • 본 연구는 거시적 빅데이터 인문학과 미시적 언어 텍스트 검색 시스템을 구축하고, 이를 통해서 언어를 통한 문화의 역동적 변화를 시간적 순서에 따라 살펴보고자 한다. 연구의 최종적인 목표는 문화도 생물체처럼 변화하는 존재라 여기고 그 구성요소들을 연구한다는 뜻인 '문화체학(文化體學; Culturomics)'과 같은 '인문학 + 정보과학 + 사회과학' 등등의 다학문간의 융합적 연구에 있다. 이 시스템을 통해서 인류 역사의 기록인 텍스트 빅데이터를 통한 인문학적 성찰을 시각화하고 있다. 이러한 구글의 업적은 인문학과 정보기술의 융합을 통해서 인문학 자체의 지평을 넓히고, 사회과학을 변형시키고, 산업과 상아탑 사이의 관계를 재조정하는데 있다[1].

  • PDF

Learning Bayesian Networks for Text Documents Classification (텍스트 문서 분류를 위한 베이지안망 학습)

  • 황규백;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF

Text Characteristic Recognition Using by Clustering (클러스터링을 이용한 텍스트 특성 인식)

  • Rhee, Kun-Moo
    • Annual Conference of KIPS
    • /
    • 2001.04b
    • /
    • pp.837-840
    • /
    • 2001
  • 텍스트 특성을 인식하는 방법적 접근은 텍스트의 기본적 특성을 이용하는 것에서부터 다변량 기법까지 다양한 방법이 제안되고 이용되고 있다. 이 논문에서는 이런 여러 기법들 중 클러스터링 기법을 이용하여 텍스트의 특성을 인식하고 그 인식능력의 효과성을 확인하고자 하였다. p 개의 변수로 구성된 N 개의 개체들은 p-차원 공간에 흩어진 N 개의 점으로 생각될 수 있으며 이들이 어떤 의미의 조밀성을 가지고 cluster를 이루고 있는지에 대한 정보는 자료의 구조를 이해하는데 매우 중요한 의미를 가지게 된다. 이런 결과들은 현재 우리학계의 도작사건논쟁, 인문학계 특히 고대사학과 민족 정체성에 대한 거대 담론들에 대한 여러 형태의 유용한 실증적 전거를 마련해주게 될 것이다.

  • PDF

Emotion Recognition based on Short Text using Semantic Orientation Analysis (의미 지향성 분석을 통한 단문 텍스트 기반 감정인지)

  • Kim, Hyun-Woo;Lee, Sung-Young;Chung, Tae-Choong;Yoon, Suk-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.375-377
    • /
    • 2012
  • 스마트폰과 같은 모바일 기기가 발전함에 따라 SNS, 모바일 메신저, SMS와 같은 단문 기반 메시지는 자신의 감정을 가장 잘 표현하는 매체이다. 그럼에도 불구하고 기존 연구는 주로 장문의 텍스트로부터 긍정, 부정 분류나 문서의 성향을 분석하는 것에 그치는 경우가 많다. 의미지향(Semantic Orientation)방법은 검색엔진을 통해 감정 키워드와 인지하고자 하는 단어의 동시 빈출 정도를 PMI로 계산한 것으로 WordNet과 같은 의미 사전이 존재하지 않는 한국어의 특성에서 적용 가능한 방법이다. 본 논문에서는 의미 지향성 및 다른 텍스트 기반 감정 분류 기술에 대해 비교하고 이들을 활용하여 한국어로 구성된 단문 텍스트에서 효율적인 감정 분류 기법을 제안하고자 한다.

A Suggestion of Designing Program for Learning Transfer from Block-Based Programming Language to Text-Based Programming Language (블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 학습 전이를 위한 프로그램 설계 방안)

  • Yi, Soyul;Lee, Youngjun
    • Proceedings of The KACE
    • /
    • 2018.01a
    • /
    • pp.29-31
    • /
    • 2018
  • 프로그래밍 언어 교육에서 일반적으로 학습자들은 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어 순서로 학습한다. 블록 기반 프로그래밍 언어나 텍스트 기반 프로그래밍 언어는 여타의 프로그래밍 언어들과 마찬가지로 프로그래밍의 기본 논리는 동일하나, 형태, 언어적 특성 및 사용 등에 대하여 다소 차이가 있다. 따라서 본 연구에서는 학습자들의 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 유연한 학습 전이를 돕기 위한 프로그램의 설계 방안을 선행 조직자의 제시, 학습 콘텐츠의 체계화, 단순하고 직관적인 화면 구성으로 제시하였다.

  • PDF

Reproducing Fairy Tales for Plot Identification (사건의 흐름 분석을 위한 동화의 재구성)

  • An, Seungjoo;Park, Jong C.
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.3-8
    • /
    • 2011
  • 텍스트의 스토리를 자동으로 이해하기 위해 텍스트에서 기술된 사건(event)을 파악하고 이들을 조합하여 스토리가 어떻게 구성되어 있는지를 파악하는 연구들이 진행되어 왔다. 하지만 이는 스토리의 깊은 의미론적 이해를 요구하는 것 이외에도 텍스트마다 상황과 일어나는 사건들이 다양하기 때문에 언어 자원이 부족한 환경에서의 처리에는 한계가 있다. 이러한 문제는 사건들을 추상화 하여 단순하게 표현할 수 있다면 스토리 이해의 자연스러움을 저해하지 않고 해결 할 수 있다. 본 논문에서는 사건들의 추상화 과정을 위한 기초 연구로서 텍스트 속 등장인물이 행하거나 당하는 사건들을 추출하여 PMI기법을 통해 사건의 흐름을 파악하고 언어학적 단서를 참조하여 스토리 이해 과정에 누락될 수 있는 사건들을 추가하여 보완하였다. 이러한 접근을 통해 등장인물이 행할 수 있는 사건들을 재구성하여 단순화하는 방법을 제시한다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

Emotion Classification from Text based on Natural Language Processing (자연어 처리 기반 텍스트 감정 분류 모델)

  • Minju Kim;Hyojeong Jin;Junghoon Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.690-691
    • /
    • 2024
  • 본 논문에서는 특정 서비스군의 소비자 니즈를 신속히 파악하기 위하여 일기와 같은 자연언어 텍스트를 활용한 분류 모델을 개발한다. 목적에 맞는 감정상태군을 정의하여 필수적인 감정들로 통합한 후 주어진 데이터셋에서 해당 감정 컬럼을 추출하여 텍스트 형식을 통일한다. 파이썬의 Keras 라이브러리를 사용하여 임베딩 레이어, LSTM 레이어, 밀집 레이어 등으로 학습 네트워크를 구성한 후 추출된 텍스트로 학습한 결과는 15회의 이포크 수행으로 98%의 정확도에 도달한다.

Development of Semantic-Based XML Mining for Intelligent Knowledge Services (지능형 지식서비스를 위한 의미기반 XML 마이닝 시스템 연구)

  • Paik, Juryon;Kim, Jinyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.59-62
    • /
    • 2018
  • XML을 대상으로 하는 연구가 최근 5~6년 사이에 꾸준한 증가를 보이며 이루어지고 있지만 대다수의 연구들은 XML을 구성하고 있는 엘리먼트 자체에 대한 통계적인 모델을 기반으로 이루어졌다. 이는 XML의 고유 속성인 트리 구조에서의 텍스트, 문장, 문장 구성 성분이 가지고 있는 의미(semantics)가 명시적으로 분석, 표현되어 사용되기 보다는 통계적인 방법으로만 데이터의 발생을 계산하여 사용자가 요구한 질의에 대한 결과, 즉 해당하는 정보 및 지식을 제공하는 형식이다. 지능형 지식서비스 제공을 위한 환경에 부합하기 위한 정보 추출은, 텍스트 및 문장의 구성 요소를 분석하여 문서의 내용을 단순한 단어 집합보다는 풍부한 의미를 내포하는 형식으로 표현함으로써 보다 정교한 지식과 정보의 추출이 수행될 수 있도록 하여야 한다. 본 연구는 범람하는 XML 데이터로부터 사용자 요구의 의미까지 파악하여 정확하고 다양한 지식을 추출할 수 있는 방법을 연구하고자 한다. 레코드 구조가 아닌 트리 구조 데이터로부터 의미 추출이 가능한 효율적인 마이닝 기법을 진일보시킴으로써 다양한 사용자 중심의 서비스 제공을 최종 목적으로 한다.

  • PDF