본 논문은 하이퍼텍스트 문서의 자동분류 성능을 높이기 위한 새로운 접근법을 제시한다. 하이퍼텍스트 문서는 일반 문서와 달리 하이퍼링크로 서로 연결된 구조를 가진다. 이 하이퍼링크 정보는 대상문서와 연관도가 높은 정보를 가지고 있으며, 이러한 링크 정보로부터 특징을 보다 잘 선별하기 위해서는 보다 정밀한 접근법이 필요하다. 본 논문은 단어간 의미 유사도를 기반으로 하이퍼텍스트 링크 정보를 활용한 특징 가공기법을 제안한다. 제안 기법은 하이퍼링크 문서로부터 대상문서와 연관도가 높은 특징을 추출하기 위해 단어간 유사도 함수를 사용하며, 유사도 함수는 워드넷의 상/하위어 관계를 이용한다. 그리고 추출된 특징들 중 의미적으로 비슷한 개념의 특징들을 합병함으로써 의미적으로 보다 견고한 분류 모델을 구축한다. 제안 기법을 검증하기 위해 Web-KB 문서집합을 이용하여 실험을 수행하였고 실험 결과 기존 방법보다 우수한 성능을 보였다.
한국표준질병사인분류(KCD)는 사람의 질병과 사망 원인을 유사성에 따라 체계적으로 유형화한 분류체계이다. KCD는 계층적 분류체계로 구성되어 있어 분류마다 연관성이 존재하지만, 일반적인 텍스트 분류 모델은 각각의 분류를 독립적으로 예측하기 때문에 계층적 정보를 반영하는 데 한계가 있다. 본 논문은 계층적 분류체계를 적용한 KCD 예측 모델을 제안한다. 제안 방법의 효과를 입증하기 위해 비교 실험을 진행한 결과 F1-score 기준 최대 0.5%p의 성능 향상을 확인할 수 있었다. 특히 비교 모델이 잘 예측하지 못했던 저빈도의 KCD에 대해서 제안 모델은 F1-score 기준 최대 1.1%p의 성능이 향상되었다.
본 논문은 일반적으로 제약 없는 형식 문서 즉, 논-맨하탄(non-manhattan) 형식의 이진문서영상을 분석하는 기법으로서, 연결요소기법에 기반한 특징추출과 이를 이용한 영역분리 및 분류에 관한 새로운 방법을 제안한다. 제안한 방식은 바텀-업(bottom-up)방식으로서 먼저 처리속도의 고속화와 축소시 특징 영역보존을 위해 임계치 축소기법을 사용하고, 축소된 이진 문서영상내의 각 연결된 검은 화소의 집합을 개체화하고 개체의 특성에 따라 텍스트, 신성분, 해프톤, 도형 그리고 표 등으로 분류한다. 영역분류는 두단계로 이루어지는데, 1차분류에서는 우선, B/W 비, 면적, 외각 테두리의 높이와 너비 비, 테두리선유무 등의 특징을 이용하여 해프톤, 수평 수직선, 테두리(표 및 도형)영역을 분리한다. 이후 2차 분류에서는 문자성분의 수평결합을 통한 텍스트행 성분을 추출한다. 마지막 후처리 과정으로 표분석 알고리듬을 통하여 테두리 영역중 표와 도형을 정확히 구분하고, 또한 도형에 관련한 문서성분을 해당 도형 개체에 연결하는 작업을 수행함으로써 완벽한 영역분류를 한다. 다양한 문서영상을 이용한 시뮬레이션을 통해 제안한 알고리듬의 성능을 입증한다.
텍스트 분류는 입력받은 텍스트가 어느 종류의 범주에 속하는지 구분하는 것이다. 분류 모델에 있어서 좋은 성능을 나타내기 위해서는 충분한 양의 데이터 셋이 필요함을 많은 연구에서 보이고 있다. 이에 따라 데이터 증강기법을 소개하는 많은 연구가 진행되었지만, 실제로 사용하기 위한 모델에 곧바로 적용하기에는 여러 가지 문제점들이 존재한다. 본 논문에서는 데이터 증강을 위해 스타일 변환 기법을 이용하였고, 그 결과 기존 방법 대비 한국어 감성 분류의 성능을 높였다.
이미지 내 글꼴을 파악하는 것은 디자인 자료 제작, 저작권 확인 등 다양한 곳에서 중요한 문제이다. 하지만 이미지 내 한글 글꼴을 자동으로 식별하는 시스템은 아직 존재하지 않으며, 수동으로 한글 글꼴을 파악하는 것은 시간과 정확도 측면에서 매우 비효율적이다. 따라서 본 논문에서는 이미지 내 한글 글꼴을 자동으로 인식하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 크게 두 가지 기법을 사용한다: (1) 한글의 기하학적인 특성을 활용하여 글자 단위로 텍스트를 인식하며, (2) 단어가 아닌 글자 단위로 글꼴을 분류하고 각 글자에 대한 글꼴 분류 결과를 종합하여 최종적인 글꼴 분류 결과를 얻는다. 10가지 한글 글꼴이 나타나는 직접 제작한 이미지를 사용하여 시스템의 성능을 평가한 결과 제안 방법은 비교 방법에 비해 더욱 정확히 한글 글꼴을 분류함을 확인하였다.
2014년 서울시는 시민의 목소리에 신속한 응대를 목표로 '서울특별시 응답소' 서비스를 시작하였다. 접수된 민원은 내용을 바탕으로 카테고리 확인 및 담당부서로 분류 되는데, 이 부분을 자동화시킬 수 있다면 시간 및 인력 비용이 감소될 것이다. 본 연구는 2010년 6월 1일부터 2017년 5월 31일까지 7년치 민원 사례 17,700건의 데이터를 수집하여, 최근 화두가 되고 있는 XGBoost 모델을 기존 RandomForest 모델과 비교하여 한국어 텍스트 분류의 적합성을 확인하였다. 그 결과 RandomForest에 대비 XGBoost의 정확도가 전반적으로 높게 나타났다. 동일한 표본을 활용하여 업 샘플링과 다운 샘플링 시행 후에는 RandomForest의 정확도가 불안정하게 나타난 반면, XGBoost는 전반적으로 안정적인 정확도를 보였다.
딥러닝의 발전으로 다양한 컴퓨터 비전 연구를 수행할 수 있게 됐다. 딥러닝은 컴퓨터 비전 연구 중 이미지 처리에서 높은 정확도와 성능을 보여줬다. 하지만 대부분의 이미지 처리 방식은 이미지의 시각 정보만을 이용해 이미지를 처리하는 경우가 대부분이다. 이미지-텍스트 쌍을 활용할 경우 이미지와 관련된 설명, 주석 등의 텍스트 데이터가 이미지 자체에서는 얻기 힘든 추가적인 맥락과 시각 정보를 제공할 수 있다. 본 논문에서는 이미지-텍스트 쌍을 활용하여 이미지와 텍스트를 분석하는 딥러닝 모델 제안한다. 제안 모델은 이미지 정보만을 사용한 딥러닝 모델보다 약 11% 향상된 분류 정확도 결과를 보였다.
Journal of the Korean Data and Information Science Society
/
제27권4호
/
pp.845-854
/
2016
감성분석 (sentiment analysis) 혹은 오피니언 마이닝 (opinion mining)은 블로그, 리뷰, 신문기사나 소셜네트워크 등의 문서에서 개인의 주관적인 정보 혹은 의견을 알아보는데 사용되는 텍스트 마이닝의 기법이다. 평점이 있는 온라인 리뷰에서 리뷰 텍스트에 기반한 평점의 분류문제에 대한 선행연구에서는 이진 분류만을 고려하였다. 그러나 긍정과 부정 외에도 중립적인 의견도 있을 수 있기 때문에 이진 분류보다는 다범주 분류가 더 적합할 것이다. 본 연구에서는 리뷰 텍스트에 기반한 평점의 다범주 분류문제를 고려한다. 전처리에서는 카이제곱 통계량을 이용하여 평점과 연관된 단어들을 추출하고 이를 입력변수로 삼아 지지벡터기계 (support vector machines)와 비례오즈 모형 (proportional odds model) 등 다범주 분류기의 예측력을 비교한다.
최근 디지털 경제의 확산으로 대규모의 데이터들이 생성되는 빅데이터 시대가 도래하고 있다. 이러한 빅데이터에서 비정형 데이터 중에서 기술문서, 기밀문서, 허위정보문서 등 유출 시 심각한 문제가 발생하는 텍스트 문서들이 존재한다. 이러한 문제를 방지하기 위해 비정형 텍스트 문서를 분류하고 처리하는 기술의 필요성이 크게 증가하고 있다. 본 논문에서는 TF-IDF와 $Na{\ddot{i}}ve$ Bayes 문서 분류 기법을 이용하여 비정형 텍스트 문서들을 정확하게 분류하는 기법을 제안한다. 제안된 기법의 성능평가를 위해서 파이썬 라이브러리의 TF-IDF와 $Na{\ddot{i}}ve$ Bayes 분류 기능을 활용하여 문서 분류기를 구현한다.
최근 웹을 기반으로 한 문서의 전자화가 이루어지면서 기존의 전통적인 펜기반 교정 시스템 또한 온라인 상의 전자 문서 환경에 맞게 변화하고 있다. 이러한 펜기반 입력 기법을 사용하는 교정 시스템에서는 일반 문서와 달리 웹 문서의 구조정보를 고려한 편집이 지원되어야 하며 또한 교정 부호와 텍스트 간의 정확한 영역 인식이 이루어져야 한다. 본 연구에서는 온라인 교정 시스템 모델링을 통하여 온라인 환경에 적합한 교정 부호를 정의하고, 교정 대상 텍스트 영역을 편집 가능한 단위로 구분하여 효율적인 편집 연산이 이루어 질 수 있도록 하였다. 또한 웹 기반의 구조문서(HTML/XML) 편집 환경을 고려하여 편집으로 인한 문서의 구조 정보 변경을 지원하기 위하여 텍스트를 비구조 및 구조정보 텍스트로 분류하여 정의하였다. 본 연구에서는 이러한 모델에 기반하여 교정 부호의 특성에 따른 가변적인 편집 텍스트 영역 인식 규칙 모델을 정의하여 교정 부호와 편집 텍스트 영역간의 모호성을 최소화 하고, 편집으로 인한 문서의 구조 정보 변경을 지원하는 시스템을 구현하였다. 결과적으로 온라인 웹 문서 환경에서 펜기반의 모호한 교정 부호의 입력을 인지적인 관점에서 해석하여 보다 정확한 교정 작업 수행을 지원하도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.