• 제목/요약/키워드: 텍스트분류

검색결과 687건 처리시간 0.024초

하이퍼텍스트 문서의 자동분류를 위한 워드넷 기반 특징 합병 기법 (A WordNet-based Feature Merge Method for HyperText Classification)

  • 노준호;김한준;장재영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.406-409
    • /
    • 2012
  • 본 논문은 하이퍼텍스트 문서의 자동분류 성능을 높이기 위한 새로운 접근법을 제시한다. 하이퍼텍스트 문서는 일반 문서와 달리 하이퍼링크로 서로 연결된 구조를 가진다. 이 하이퍼링크 정보는 대상문서와 연관도가 높은 정보를 가지고 있으며, 이러한 링크 정보로부터 특징을 보다 잘 선별하기 위해서는 보다 정밀한 접근법이 필요하다. 본 논문은 단어간 의미 유사도를 기반으로 하이퍼텍스트 링크 정보를 활용한 특징 가공기법을 제안한다. 제안 기법은 하이퍼링크 문서로부터 대상문서와 연관도가 높은 특징을 추출하기 위해 단어간 유사도 함수를 사용하며, 유사도 함수는 워드넷의 상/하위어 관계를 이용한다. 그리고 추출된 특징들 중 의미적으로 비슷한 개념의 특징들을 합병함으로써 의미적으로 보다 견고한 분류 모델을 구축한다. 제안 기법을 검증하기 위해 Web-KB 문서집합을 이용하여 실험을 수행하였고 실험 결과 기존 방법보다 우수한 성능을 보였다.

계층적 분류체계를 적용한 한국질병사인분류 예측 모델의 개선 (The improvement of Korean Standard Classification of Diseases prediction model by applying the hierarchical classification system)

  • 정근영;이주상;선주오;정석원;신현진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.59-64
    • /
    • 2022
  • 한국표준질병사인분류(KCD)는 사람의 질병과 사망 원인을 유사성에 따라 체계적으로 유형화한 분류체계이다. KCD는 계층적 분류체계로 구성되어 있어 분류마다 연관성이 존재하지만, 일반적인 텍스트 분류 모델은 각각의 분류를 독립적으로 예측하기 때문에 계층적 정보를 반영하는 데 한계가 있다. 본 논문은 계층적 분류체계를 적용한 KCD 예측 모델을 제안한다. 제안 방법의 효과를 입증하기 위해 비교 실험을 진행한 결과 F1-score 기준 최대 0.5%p의 성능 향상을 확인할 수 있었다. 특히 비교 모델이 잘 예측하지 못했던 저빈도의 KCD에 대해서 제안 모델은 F1-score 기준 최대 1.1%p의 성능이 향상되었다.

  • PDF

연결요소 특징을 이용한 복잡한 문서영상의 구조 분석 (A new segmentation method for non-manhattan layout document images using connected component)

  • 이상협;이경무
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1997년도 학술대회
    • /
    • pp.71-74
    • /
    • 1997
  • 본 논문은 일반적으로 제약 없는 형식 문서 즉, 논-맨하탄(non-manhattan) 형식의 이진문서영상을 분석하는 기법으로서, 연결요소기법에 기반한 특징추출과 이를 이용한 영역분리 및 분류에 관한 새로운 방법을 제안한다. 제안한 방식은 바텀-업(bottom-up)방식으로서 먼저 처리속도의 고속화와 축소시 특징 영역보존을 위해 임계치 축소기법을 사용하고, 축소된 이진 문서영상내의 각 연결된 검은 화소의 집합을 개체화하고 개체의 특성에 따라 텍스트, 신성분, 해프톤, 도형 그리고 표 등으로 분류한다. 영역분류는 두단계로 이루어지는데, 1차분류에서는 우선, B/W 비, 면적, 외각 테두리의 높이와 너비 비, 테두리선유무 등의 특징을 이용하여 해프톤, 수평 수직선, 테두리(표 및 도형)영역을 분리한다. 이후 2차 분류에서는 문자성분의 수평결합을 통한 텍스트행 성분을 추출한다. 마지막 후처리 과정으로 표분석 알고리듬을 통하여 테두리 영역중 표와 도형을 정확히 구분하고, 또한 도형에 관련한 문서성분을 해당 도형 개체에 연결하는 작업을 수행함으로써 완벽한 영역분류를 한다. 다양한 문서영상을 이용한 시뮬레이션을 통해 제안한 알고리듬의 성능을 입증한다.

  • PDF

한국어 스타일 변환 기반 데이터 증강을 이용한 감성 분류 성능 향상 (Improving Performance of Sentiment Classification using Korean Style Transfer based Data Augmentation)

  • 고은우;이은찬;안상태
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.480-484
    • /
    • 2022
  • 텍스트 분류는 입력받은 텍스트가 어느 종류의 범주에 속하는지 구분하는 것이다. 분류 모델에 있어서 좋은 성능을 나타내기 위해서는 충분한 양의 데이터 셋이 필요함을 많은 연구에서 보이고 있다. 이에 따라 데이터 증강기법을 소개하는 많은 연구가 진행되었지만, 실제로 사용하기 위한 모델에 곧바로 적용하기에는 여러 가지 문제점들이 존재한다. 본 논문에서는 데이터 증강을 위해 스타일 변환 기법을 이용하였고, 그 결과 기존 방법 대비 한국어 감성 분류의 성능을 높였다.

  • PDF

글자 단위 텍스트 인식 기반의 이미지 내 한글 글꼴 분류 시스템 개발 (Development of a Korean Font Classification System for Images Based on Syllable-Level Text Recognition)

  • 유사라;김윤주;송지효;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.718-721
    • /
    • 2023
  • 이미지 내 글꼴을 파악하는 것은 디자인 자료 제작, 저작권 확인 등 다양한 곳에서 중요한 문제이다. 하지만 이미지 내 한글 글꼴을 자동으로 식별하는 시스템은 아직 존재하지 않으며, 수동으로 한글 글꼴을 파악하는 것은 시간과 정확도 측면에서 매우 비효율적이다. 따라서 본 논문에서는 이미지 내 한글 글꼴을 자동으로 인식하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 크게 두 가지 기법을 사용한다: (1) 한글의 기하학적인 특성을 활용하여 글자 단위로 텍스트를 인식하며, (2) 단어가 아닌 글자 단위로 글꼴을 분류하고 각 글자에 대한 글꼴 분류 결과를 종합하여 최종적인 글꼴 분류 결과를 얻는다. 10가지 한글 글꼴이 나타나는 직접 제작한 이미지를 사용하여 시스템의 성능을 평가한 결과 제안 방법은 비교 방법에 비해 더욱 정확히 한글 글꼴을 분류함을 확인하였다.

RandomForest와 XGBoost를 활용한 한국어 텍스트 분류: 서울특별시 응답소 민원 데이터를 중심으로 (Korean Text Classification Using Randomforest and XGBoost Focusing on Seoul Metropolitan Civil Complaint Data)

  • 하지은;신현철;이준기
    • 한국빅데이터학회지
    • /
    • 제2권2호
    • /
    • pp.95-104
    • /
    • 2017
  • 2014년 서울시는 시민의 목소리에 신속한 응대를 목표로 '서울특별시 응답소' 서비스를 시작하였다. 접수된 민원은 내용을 바탕으로 카테고리 확인 및 담당부서로 분류 되는데, 이 부분을 자동화시킬 수 있다면 시간 및 인력 비용이 감소될 것이다. 본 연구는 2010년 6월 1일부터 2017년 5월 31일까지 7년치 민원 사례 17,700건의 데이터를 수집하여, 최근 화두가 되고 있는 XGBoost 모델을 기존 RandomForest 모델과 비교하여 한국어 텍스트 분류의 적합성을 확인하였다. 그 결과 RandomForest에 대비 XGBoost의 정확도가 전반적으로 높게 나타났다. 동일한 표본을 활용하여 업 샘플링과 다운 샘플링 시행 후에는 RandomForest의 정확도가 불안정하게 나타난 반면, XGBoost는 전반적으로 안정적인 정확도를 보였다.

  • PDF

이미지-텍스트 쌍을 활용한 이미지 분류 정확도 향상에 관한 연구 (A Study on Improvement of Image Classification Accuracy Using Image-Text Pairs)

  • 김미희;이주혁
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.561-566
    • /
    • 2023
  • 딥러닝의 발전으로 다양한 컴퓨터 비전 연구를 수행할 수 있게 됐다. 딥러닝은 컴퓨터 비전 연구 중 이미지 처리에서 높은 정확도와 성능을 보여줬다. 하지만 대부분의 이미지 처리 방식은 이미지의 시각 정보만을 이용해 이미지를 처리하는 경우가 대부분이다. 이미지-텍스트 쌍을 활용할 경우 이미지와 관련된 설명, 주석 등의 텍스트 데이터가 이미지 자체에서는 얻기 힘든 추가적인 맥락과 시각 정보를 제공할 수 있다. 본 논문에서는 이미지-텍스트 쌍을 활용하여 이미지와 텍스트를 분석하는 딥러닝 모델 제안한다. 제안 모델은 이미지 정보만을 사용한 딥러닝 모델보다 약 11% 향상된 분류 정확도 결과를 보였다.

온라인 리뷰에서 평점의 분류 (Classification of ratings in online reviews)

  • 최동준;최호식;박창이
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.845-854
    • /
    • 2016
  • 감성분석 (sentiment analysis) 혹은 오피니언 마이닝 (opinion mining)은 블로그, 리뷰, 신문기사나 소셜네트워크 등의 문서에서 개인의 주관적인 정보 혹은 의견을 알아보는데 사용되는 텍스트 마이닝의 기법이다. 평점이 있는 온라인 리뷰에서 리뷰 텍스트에 기반한 평점의 분류문제에 대한 선행연구에서는 이진 분류만을 고려하였다. 그러나 긍정과 부정 외에도 중립적인 의견도 있을 수 있기 때문에 이진 분류보다는 다범주 분류가 더 적합할 것이다. 본 연구에서는 리뷰 텍스트에 기반한 평점의 다범주 분류문제를 고려한다. 전처리에서는 카이제곱 통계량을 이용하여 평점과 연관된 단어들을 추출하고 이를 입력변수로 삼아 지지벡터기계 (support vector machines)와 비례오즈 모형 (proportional odds model) 등 다범주 분류기의 예측력을 비교한다.

TF-IDF와 Naïve Bayes 분류기를 활용한 문서 분류 기법 (Text Document Classification Scheme using TF-IDF and Naïve Bayes Classifier)

  • 유종열;현상현;양동민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.242-245
    • /
    • 2015
  • 최근 디지털 경제의 확산으로 대규모의 데이터들이 생성되는 빅데이터 시대가 도래하고 있다. 이러한 빅데이터에서 비정형 데이터 중에서 기술문서, 기밀문서, 허위정보문서 등 유출 시 심각한 문제가 발생하는 텍스트 문서들이 존재한다. 이러한 문제를 방지하기 위해 비정형 텍스트 문서를 분류하고 처리하는 기술의 필요성이 크게 증가하고 있다. 본 논문에서는 TF-IDF와 $Na{\ddot{i}}ve$ Bayes 문서 분류 기법을 이용하여 비정형 텍스트 문서들을 정확하게 분류하는 기법을 제안한다. 제안된 기법의 성능평가를 위해서 파이썬 라이브러리의 TF-IDF와 $Na{\ddot{i}}ve$ Bayes 분류 기능을 활용하여 문서 분류기를 구현한다.

  • PDF

규칙기반 텍스트 영역 선택 기법을 이용한 펜기반 교정 시스템의 구현 (Implementation of Pen-based Editing System using Rule-based Text Selection Technique)

  • 정한상;김재경;손원성;임순범;최윤철
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.203-206
    • /
    • 2002
  • 최근 웹을 기반으로 한 문서의 전자화가 이루어지면서 기존의 전통적인 펜기반 교정 시스템 또한 온라인 상의 전자 문서 환경에 맞게 변화하고 있다. 이러한 펜기반 입력 기법을 사용하는 교정 시스템에서는 일반 문서와 달리 웹 문서의 구조정보를 고려한 편집이 지원되어야 하며 또한 교정 부호와 텍스트 간의 정확한 영역 인식이 이루어져야 한다. 본 연구에서는 온라인 교정 시스템 모델링을 통하여 온라인 환경에 적합한 교정 부호를 정의하고, 교정 대상 텍스트 영역을 편집 가능한 단위로 구분하여 효율적인 편집 연산이 이루어 질 수 있도록 하였다. 또한 웹 기반의 구조문서(HTML/XML) 편집 환경을 고려하여 편집으로 인한 문서의 구조 정보 변경을 지원하기 위하여 텍스트를 비구조 및 구조정보 텍스트로 분류하여 정의하였다. 본 연구에서는 이러한 모델에 기반하여 교정 부호의 특성에 따른 가변적인 편집 텍스트 영역 인식 규칙 모델을 정의하여 교정 부호와 편집 텍스트 영역간의 모호성을 최소화 하고, 편집으로 인한 문서의 구조 정보 변경을 지원하는 시스템을 구현하였다. 결과적으로 온라인 웹 문서 환경에서 펜기반의 모호한 교정 부호의 입력을 인지적인 관점에서 해석하여 보다 정확한 교정 작업 수행을 지원하도록 하였다.

  • PDF