Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.105-108
/
2000
본 논문에서는 텍스쳐가 지니고 있는 일반적인 속성 거침, 부드러움의 특성을 분석해서 영상에 내재된 텍스쳐를 자동으로 분석하고 분류하는 텍스쳐 인식 시스템을 제안한다. 본 연구는 텍스쳐 영상이 지닌 그레이 레벨의 공간적인 의존성을 이용한 통계적 분석에 기반 한 것으로 모멘트와 동차성의 차를 이용해서 텍스쳐의 일반적인 속성을 검출하기 때문에 텍스쳐의 구조형태에 크게 영향을 받지 않는 이점을 가진다. 제안한 시스템의 성능 평가를 위해서 다양한 텍스쳐 영상에 제안한 방법을 적용하고, 성공적인 결과를 보인다.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
1998.04a
/
pp.198-204
/
1998
텍스쳐는 그 정의화 특징이 명확하지 않은 패턴이며, 무한한 변형에 따른 무한한 수의 텍스쳐가 존재한다. 이로 인해 사람의 텍스쳐 지각에 관한 연구에 어려움이 있다. 본 논문에서는 신경망으로 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각을 모의실험하였다. 쌍별비교와 비교판단법칙을 사용하여 사람이 지각하는 텍스쳐의 특징값과 텍스쳐간의 유사도 값을 구하였다. 구한 값을 바탕으로 신경망의 일종인 다층퍼셉트론을 사용하여 특징 추출기와 유사도 특정기를 구현하여 모의 실험하였다. 신경망을 사용하여 모의실험한 결과, 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각과 유사한 결과를 얻었다. 이러한 실험결과는 신경망으로 구현된 시스템이 사람의 감성적인 수치를 구하는 방법으로 사용될 수 있음을 보여 준다.
본 논문에서는 SILVACO 사의 ATHENA와 ATLAS를 이용하여 후면 전극 실리콘 태양전지 (back contact silicon solar cell)의 전면 텍스쳐링 (texturing) 깊이 (depth)와 텍스쳐링 간격 (gap)에 따른 태양전지 효율(efficiency)에 미치는 영향을 분석하였다. 제안한 후면 전극 실리콘 태양전지는 (100) silicon wafer(n-type, $6{\times}10^{15}\;cm^{-3}$)을 기반으로 전면부에 텍스쳐링을, 후면부에 BSF(back surface field, $1{\times}10^{20}\;cm^{-3}$)와 에미터(emitter, $8.5{\times}10^{19}\;cm^{-3}$)를 구성하고, 셀간 피치를 1250 ${\mu}m$, BSF와 에미터의 간격을 25 ${\mu}m$으로 한 구조이다. 텍스쳐링 간격이 없이 텍스쳐링 깊이를 0 ${\mu}m$에서 150 ${\mu}m$으로 증가시켜 분석한 결과, 텍스쳐링 깊이가 증가할수록 효율이 23.90%에서 25.79%로 증가하였다. 텍스쳐링 간격을 1 ${\mu}m$에서 100 ${\mu}m$으로 증가시켜 분석한 결과, 텍스쳐링 깊이와 상관없이 텍스쳐링 간격이 증가할수록 후면 전극 실리콘 태양전지의 효율이 감소하였다. 텍스쳐링 유무에 따라 후면 전극 태양전지의 외부양자효율의 차이를 보였고 텍스쳐링이 있을 때 외부양자효율이 보다 높은 값을 얻었다.
Proceedings of the Korea Multimedia Society Conference
/
2003.05b
/
pp.512-515
/
2003
텍스쳐 매핑은 복잡한 3차원 모델을 모델링하는 대신 텍스쳐 맵으로써 대체하는 기법이다. 일반적인 영상기반 렌더링 기법에서는 영상으로부터 바로 텍스쳐를 추출하여 렌더링에 사용한다. 그러나 이러한 텍스쳐는 주변 환경으로부터의 빛과 물체의 반사 속성이 결합되어 나타나는 색이므로 영상으로부터 획득한 텍스쳐를 텍스쳐 맵으로 사용할 경우 비사실적인 영상을 생성하게 된다. 그러므로 획득한 텍스쳐에서 물체의 재질을 찾아내는 것은 사실적인 렌더링을 하기 위해 매우 중요한 일이다. 본 논문에서는 사실적인 렌더링을 위해 HDRI 환경맵을 이용하여 Diffuse map을 생성하는 기법을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.39-41
/
1998
보다 현실적인 3차원 영상을 얻기 위한 텍스쳐 매핑은 대부분의 그래픽 시스템에서사용한다. 3차원 그래픽 시스템이 생성한 객체의 표면 위에 2차원 이미지를 입힘으로써 그래픽 시스템의 성능저하를 가져오지 않으면서 영상의 현실성을 높이는 텍스쳐 매핑은 텍스쳐 이미지를 저장하기 위해 많음 메로리가 요구되면 고성능 텍스쳐 시스템을 위해 빠른 메로리 접근과 광대한 대역폭이 요구된다. 본 논문에서는 벡터 양자와(Vector quantization) 압축기법을 이용하여 텍스쳐 이미지에 대한 효율적인 압축을 통해 많은 메모리 요구를 해결하며 압축된 텍스쳐 이미지의 효율적인 캐싱을 통해 빠른 메로리 접근과 광대한 대역폭 문제를 해결할 수 있는 구조를 제시한다. 본 논문에서 제안된 구조는 버퍼링을 통해 메로리 접근 시간을 숨김으로써 고성능 텍스쳐 시스템을 지원할 수 있다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.325-328
/
2000
텍스쳐 분석은 장면 분할, 물체 인식, 모양과 깊이 인식 등의 많은 영상 처리 분야에서 중요한 기술 중의 하나이다. 그러나 실영상에 포함된 다양한 텍스쳐 성분에 대해서 보편적으로 적용 가능한 효율적인 방법들에 대한 연구는 미흡한 실정이다. 본 논문에서는 텍스쳐 인식을 위해서 비교사 학습 방법에 기반 한 효율적인 텍스쳐 분석 기법을 제안한다. 제안된 방법은 텍스쳐 영상이 지닌 방향특징 정보로서 각(angle)과 강도(power)를 추출하여 자기 조직화 신경회로망에 의해서 블록기반으로 군집화(clustering)된다. 비교사적 군집 결과는 통합(merging)과 불림(dilation) 과정을 통해서 영상에 내재된 텍스쳐 성분의 분할을 수행한다. 제안된 시스템의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 적용한 후 그 유효성을 보인다.
The Transactions of the Korea Information Processing Society
/
v.7
no.11
/
pp.3592-3602
/
2000
Image processing consist of image analysis and classification. The one is extracting of feature value in the image. The other is segimentationof image that have same properiv. A novel approach for the analysis and classification of tezture images based on statistical texture prunitive estraction are proposed. In this approach, feature vector extracting is based on stalisucal method using apatial dependence of grey level and use general lexture proerty. In is advantageous that not effiected on structure and type of lexture. These components describe the amount of roughness and softness of texture images Two leatures. Moment and Homogeneity, are componted from GLCM(gray level co-occurrence matrices) of the lexture promitive to charactenize statisical properties of the image. We show the successful experimental results by considerationof these two components fro the analysis and classificationto regular and irregular texture images.
본 연구에서는 QuickBird 도심지역 영상을 이용하였으며, 텍스쳐영상생성기법과 웨이브릿 기법을 이용하여 생성시킨 웨이브릿 기반 텍스쳐 융합 영상(이하 융합영상)을 원본영상의 새로운 밴드로 추가시켜 분류작업을 수행하였다. 이외에도 비교분석을 위하여 원본영상에 텍스쳐 영상을 추가시킨 영상과, 텍스쳐와 융합영상을 모두 추가시킨 영상을 이용하여 분류작업을 수행하였다. 분류에는 ISODATA 무감독분류 기법을 사용하였으며, 텍스쳐 영상과 융합영상을 같이 추가시킨 영상을 이용하였을 때 분류정확도가 가장 많이 향상되는 것으로 나타났다.
Proceedings of the Korean Information Science Society Conference
/
2007.10b
/
pp.156-161
/
2007
본 논문에서는 실사 영상을 사용하여 3차원 아바타의 얼굴 텍스쳐를 생성하는 기법을 제시한다. 먼저 UVW 맵을 기준으로 실사영상에서의 해당 영역을 수동으로 지정해 준다. 그 다음 지정된 영상 영역들을 사용하여 UVW 맵에 해당하는 텍스쳐 영상을 생성한다. 제안된 텍스쳐 생성 기법은 포토샵 등을 사용한 기존의 일반적인 방법에 비해서 수작업 시간을 단축할 수 있으며 실사 영상의 사실감을 높여 준다. 기존의 텍스쳐 생성 절차들은 3차원 모델의 메쉬 구조에 영향을 주었으나, 제안된 방법은 3차원 모델의 메쉬구조를 수정하지 않고도 원하는 형태의 텍스쳐를 생성할 수 있는 장점이 있다. 실제 사람의 모습을 여러각도에서 촬영하여 얻은 영상을 사용하여 주어진 UVW 맵에 적합한 얼굴 텍스쳐를 생성하였다. 생성된 텍스쳐를 사용하여 3차원 아바타를 렌더링한 결과 아바타 얼굴의 사실감이 증가되었음을 알 수 있었다.
The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.