• Title/Summary/Keyword: 테티스해

Search Result 4, Processing Time 0.019 seconds

Geochemical Characteristics of Granodiorite and Arenaceous Sedimentary Rocks in Chon-Ashuu Area, Kyrgyzstan (키르키스스탄 촌아슈 지역 화강섬록암질암 및 사질원 퇴적암의 지화학적 특징)

  • Kim, Soo-Young;Chi, Sei-Jung;Park, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.273-288
    • /
    • 2011
  • Chon-Ashuu copper mining claim area is located, in terms of the geotectonic setting, in the northern part of the suture line which is bounded with the marginal part of Issik-kul micro-continent on the southern part of North Tien-Shan terrane. The geological blocks of Chon-Ashuu districts belong to the southern tip of Kazakhstan orocline. The rock formation of this area are composed of the continental crust or/and arc collage and the paleo-continental fragments-accretionary wedge complex of pre-Altaid orogenic materials. ASI(Alumina Saturation Index) of Paleozoic plutonic rocks in Chon-Ashuu area belong to the peraluminous and metaluminous rocks which were generated from fractional crystallization of Island and volcanic arc crusts in syn-post collisional plate. The geology of the ChonAshuu area consists of upper Proterozoic and Paleozoic rock formations. According to Harker variation diagrams for Chon-Ashuu arenaceous sedimentary rocks, the silty sandstone of Chon-Ashuu area showing the mineralogical immaturity were derived from Island arc or the marginal environments of active continent in Cambro-Carboniferous period. Numerous intrusive rocks of Chon-Ashuu area are distributed along north east trending tectonic structures and are bounded on four sides by the conjugate pattern. The most common type of the plutonic rocks are granodiorite and monzodiorite. According to the molecular normative An-Ab-Or composition (Barker, 1979), the plutonic rocks in Chon-Ashuu area are classified into tonalite - trondhjemite - granodiorite (TTG) series which are an aggregation of rocks which is the country rock of copper mineralization, that are formed by melting of hydrous mafic crust at high pressure.

Geologic Structure of the Anatolian Peninsula: Tectonic Growth of Collisional Continental Margins (아나톨리아 반도의 지질구조: 대륙 충돌에 따른 구조적 성장)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.465-476
    • /
    • 2012
  • The Anatolia peninsula consists of several continental fragments that include the Pontide Block in north and the Anatolide-Touride Block in south as well as the Arabian Platform in southeast. These continental blocks were joined together into a single landmass in the late Tertiary. During most of the Phanerozoic these continental blocks were separated by paleo-oceans, such as Paleo-Tethys and Neo-Tethys. The Pontide Block in north show Laurasian affinities, and was only slightly affected by the Alpide orogeny; they preserve evidence for the Variscan and Cimmeride orogenies. The Pontic Block is composed of the Strandja, Istanbul and Sakarya zones that were amalgamated into a single terrane by the mid Cretaceous times. The Anatolide-Tauride Block in south shows Gondwana affinities but was separated from Gondwana in the Triassic and formed an extensive carbonate platform during the Mesozoic. The Anatolide-Tauride Block was intensely deformed and partly metamorphosed during the Alpide orogeny; this leads to the subdivision of the Anatolide-Tauride Block into several zones on the basis of the type and age of metamorphism and deformation. The Arabian Platform in southeast forms the northernmost extension of the Arabian Plate that shows a stratigraphy similar to the Anatolide-Tauride Block with a clastic-carbonate dominated Palaeozoic and a carbonate dominated Mesozoic succession. A new tectonic era started in Anatolia Peninsula in the Oligocene-Miocene after the final amalgamation of these continental blocks and plate. This neotectonic phase is characterized by extension, and strike-slip faulting, continental sedimentation, and widespread calcalkaline magmatism, which played a very important role in producing beautiful landscapes of the Anatolia Peninsula today.

Neritic Paleocurrent Analysis of Pennsylvanian Tethyan Sea at Samcheog Coalfield, Korea (후기(後期) 석탄기(石炭紀) 테티스해내(海內) 한국 삼척탄전(三涉炭田)의 천해류(淺海流) 분석(分折))

  • Kim, Haang Mook
    • Economic and Environmental Geology
    • /
    • v.11 no.1
    • /
    • pp.21-37
    • /
    • 1978
  • The depositional environment of the Manhang and the Geumcheon Formation of the Pennsylvanian Gomog Croup is revealed to the shallow neritic marine milieu in this paper also as the results of Park (1963), Cheong(1975) and Kim (1976), through the analyses of stratigraphy, paleocurrent, properties of cross-beddings and sedimentational features. The formations contains some possible terrestrial sediments suggesting the paralic environment, which are however not recognized definitely within them. The paleocurrent analysis is made to the Manhang Formation only. The paleocurrent of the formation is known to belong to the shallow neritic longshore current. The paleocurrent analysis is based chiefly on the cross-bedding analysis, and subordinately on the texture of elastic coarse sediments. The paleocurrent mean is determined to $269^{\circ}$, that is, from east to west, of which direction is interpreted to the right angle to the slope of the basinal depository plane and also the parallel with die depositional strike, according to Klein (1960) and Selley's (1968) criteria. The variance value of paleocurrent directions of the Manhang Formation in the whole area studied is 6,374, and the values range from 3,394 to 6,957 according to the dirstricts. The paleocurreut pattern of the whole area shows polymodel, and the patterns in each district range from trimodel to quadrimodel. Those models approach to the shallow marine or paralic model of Tohill and Picard (1966), Picard and High (1968 a), Pisnak (1957) and Pettijohn (1962). The mean value of maximum inclinations of cross-beddings of the whole area is $19.9^{\circ}$ with the standard deviation of 8.4, and ranges from $15.6^{\circ}$ to $21.7^{\circ}$ in the districts. Comparing the histogram showing the frequency distribution of the maximum inclinations of cross-beddings of the Manhang Formation with the Pettijohn's (1962) histogram, it is found that the model approaches to his marine model. The Pennsylvanian Gomog Group of the coalfield is considered to have had been deposited in the pseudogeosynclinal zone on the plateau by the transgression of the Tethyan sea caused by the epirogenic movements during the Pennsylvanian Period.

  • PDF