• Title/Summary/Keyword: 터빈 익렬

Search Result 68, Processing Time 0.02 seconds

Experimental Study on Stream Turbine Cascade Flow (증기터빈 익렬유동에 관한 실험적 연구)

  • 권순범;윤의수;김병지
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.

Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations (2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션)

  • Chung, H.T.;Kim, J.S.;Sin, P.Y.;Choi, B.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Numerical simulation of turbulent flows through linear turbine cascades with high turning angles (전향각이 큰 선형터빈 익렬을 통하는 난류유동의 수치해석)

  • Lee, Hun-Gu;Yu, Jeong-Yeol;Yun, Jun-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3917-3925
    • /
    • 1996
  • A numerical analysis on three dimensional turbulent incompressible flows through linear cascades of turbine rotor blades with high turning angles has been performed by using a generalized k-.epsilon. model which is a high Reynolds number form and derived by RNG(renormalized group) method to account for the variation of the rate of strain. A second order upwind scheme is used to suppress numerical diffusion in approximating the convective terms. Body-fitted coordinates are adopted to represent the complex blade geometry accurately. For the case without tip clearance, velocity vectors and static pressure contours are shown to be in good agreement with previous experimental results. For the case with tip clearance, the effects of the passage vortex and tip clearance flow on the total pressure loss as well as their interactions are discussed.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

EFFECTS OF COMPUTATIONAL GRIDS ON NUMERICAL SIMULATION OF TRANSONIC TURBINE CASCADE FLOWFIELDS (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung H.T.;Jung H.N.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

Effects of Computational Grids on Numerical Simulation of Transonic Turbine Cascade Flowfields (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung, H.T.;Jung, H.N.;Seo, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.857-862
    • /
    • 2003
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

  • PDF

Controlling the Horseshoe Vortex by the Leading-Edge Fence at a Generic Wing-Body Junction (일반적인 날개 형상에서의 앞전 판에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.336-343
    • /
    • 2009
  • Secondary flow losses can be as high as 30~50% of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and investigates the characteristics of the generated horseshoe vortex as the shape factors, such as the installed height, and length of the fence. The study was investigated using $FLUENT^{TM}$. Total pressure loss coefficient was improved about 4.0 % at the best case than the baseline.

Incompressible Turbulent Flow Simulation of the Rotor-Stator Configuration (비압축성 Navier Stokes 방정식을 이용한 2차원 터빈 익렬내의 난류유동해석)

  • Kim H. W.;Park W. G.;Jung Y. R.;Kim K. S.;Moon S.-G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.225-234
    • /
    • 1995
  • 터빈익렬내부의 유동해석을 위해 비압축성 점성유동해석을 이용한 수치 해석 프로그램을 개발하였다. 지배방정식으로는 2차원의 비정상 비압축성 Navier-Stokes 방정식을 일반화된 곡선좌표계로 전환하여 암시적으로(implicitly) 반복적인 시간진행방법을 이용하여 유동해석을 하였다. 지배방정식의 각항들은 시간에 대해 1차의 정확도 그리고 영역에 대해서는 2차의 정확도, 대류항에 대해서는 3차의 정확도를 가지는 Upwind기법을 적용하였다. 특히, 실험적 접근이 매우 어려운 터빈의 정익과 회전하고 있는 동익과의 상호운동을 멀티블럭기법과 데이터 interface를 통해 보다 쉽게 해석할 수 있었다. 본 연구결과는 정익만을 계산한 타 연구자의 결과와의 비교시 매우 일치하였으며 물리적인 유동을 잘 파악할 수 있었다. 난류유동 해석을 위해서 Baldwin-Lomax 모델을 적용하였다.

  • PDF

Controlling Horseshoe Vortex by the Leading-Edge Chamfer Groove in a Generic Wing-Body Junction (일반적인 블레이드 형상에서의 앞전 모서리 홈에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Choe, Byeong-Ik;Kim, Jae-Min;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.185-191
    • /
    • 2008
  • The aerodynamic losses so attributed to the endwall - usually termed secondary flow losses or secondary losses - can be as high as 30$\sim$50% of the total aerodynamic losses in a blade or stator row. Inlet guide vanes, with lower total turning and higher convergence ratios, will have smaller secondary losses, amounting to as much as 20% of total loss for an inlet stator row. These are important part for improving a turbine efficiency. The present study deals with a leading edge chamfer groove on a wing-body to investigate the vortex generation and characteristics of a horseshoe vortex with the installed height, and depth of the groove. The current study is investigated with $FLUENT^{TM}$.

  • PDF