• Title/Summary/Keyword: 터빈 성능

Search Result 893, Processing Time 0.021 seconds

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jong-Jae;Seo, Jong-Chul;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.325-330
    • /
    • 2011
  • A rotor overlap technique was adapted to improve the performance of a axial turbine. The technique secured sufficient flow passage by additional height at the rotor tip and hub. especially in a supersonic turbine, the technique reduced the chance of chocking in the rotor passage, and made to be satisfied the design pressure ratio. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, a optimization technique was appled to maximize the improvement of the turbine performance. An approximate optimization method was used for the investigation to secure the computational efficiency. The design variables was shape factors of a rotor overlap. Results indicated that a significant improvement in turbine performance can be achieved through the optimization of the rotor overlap.

  • PDF

Experimental Study of the Micro Gas Turbine Engine Performance Test (마이크로 가스터빈 엔진 성능실험 연구)

  • Kim, Seungjae;Choi, Seongman;Rhee, Dongho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.587-590
    • /
    • 2017
  • Performance test was conducted by micro gas turbine engine. A small test rig was established for the performance measurement of the micro gas turbine engine. The performance was conducted by the Olympus HP engine. Engine inlet mass flow rate, static thrust, fuel consumption rate, air and gas temperature at the inlet of major components were measured. In the test results, we could well understand about the micro gas turbine engine performance characteristics.

  • PDF

A Study of the Second Stage Effect on a Partially Admitted Small Turbine (부분분사에서 작동하는 소형터빈에서 두 번째 단의 효과에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Choi, Sang-Kyu;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.898-906
    • /
    • 2008
  • A tested turbine consists of two stages, and an axial-type and a radial-type turbine are applied to the first and second stage, respectively. The mean diameter of the axial-type turbine rotor is 70 mm, and the outer diameter of the radial-type turbine is 68mm at the inlet. In this experiment, an axial-type turbine, two different radial-type turbines, and three different nozzle flow angles are applied to find the optimal design parameters. To compare the turbine performance, the net specific output torque is evaluated. The test results show that the nozzle flow angle on the first stage is a more important parameter than other design parameters for partially admitted small turbines to obtain high operating torque. For a 3.4% partial admission rate, the net specific output torque is increased by 13% with the addition of a radial-type rotor to the second stage when the turbine operates at $75^{\circ}$ nozzle flow angle.

Effect of Flow Angles at Nozzle and Solidities on a Partial Admitted Small Axial-Type Turbine (부분분사 소형 축류형터빈에서 현절비와 노즐유동각이 성능에 미치는 연구)

  • Cho, Chong-Hyun;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • Performance characteristics on a partially admitted small axial-type turbine are experimentally studied with changing design parameters, such as exit flow angles at the nozzle and solidities at the rotor. The tested turbine consists of a single-stage and its mean radius is 35 mm. In this experiment, three different solidities and four different nozzle flow angles are applied to find the optimal design parameter. For a comparison of the turbine performance, the net specific output powers are evaluated. For a 3.4% partial admission rate, the best performance is obtained when the rotor solidity is at 2.18, which is increased to 74% compared to the solidity at full admission.

Design and CFD study of 360 W class wind turbine tree in accordance with environmental scenery (주위 경관을 고려한 360 W급 풍력터빈나무 설계 및 유동해석)

  • Ha, Min-Su;Jung, Won-Hyuk;Choi, Nak-Joon;Park, Young-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • The objective of this paper is to develop 360 W class wind turbine tree using a helical type wind turbine. The performance of 100 W class helical wind turbine which finished the conceptual design has been forecast through the CFD analysis. After performed the analysis of one wind turbine performance, four wind turbine have been installed at the structure of a tree type and then the change of a output data has been verified through the CFD analysis. In this study, the CFD results of a helical wind turbine tree have been shown by a velocity and pressure distribution. The result could obtain more than rated power 360 W through the CFD analysis.

A Performance Analysis of Gas Turbine Using Low Caloric Value Syngas Fuel (저열량의 합성가스 연료를 사용한 가스터빈의 성능해석)

  • 서석빈;김종진;안달홍;이성노;박종호
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.187-193
    • /
    • 2002
  • IGCC (Integrated Gasification Combined Cycle) power plant is becoming more attractive because it allows that various fuels like coal, heavy oil md even residue oil and wood are used in a gas turbine. This paper presents a prediction of performances of gas turbine when low caloric value syngas fuels produced from the IGCC is used in it originally designed with natural gas fuel. Using a systemic method which predicts a gas turbine behavior with limited design data, when natural gas, design fuel and four other types of syngas are used in GE 7FA gas turbine, its performances are predicted on design and off-design conditions.

Numerical Study on the Effect of Turbine Shape on the Flow Characteristics and Performance of Dental Air Turbine Handpiece (터빈 형상에 따른 의료용 에어터빈 핸드피스의 유동분석 및 성능에 관한 수치적 연구)

  • Lee, Jeong-Ho;Lee, Sang-Do;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.5-8
    • /
    • 2008
  • In this paper, the effect of turbine shape on the flow characteristics and performance of dental air turbine handpiece were studied using CFD. Computations have been performed for many different cases of the angle between the center-line of nozzle and turbine rotor by using frozen rotor method that one of steady-state method. The characteristics of turbine rotor for three different types (flat, concave, gull) were analyzed. Additionally, the turbine rotor of gull type that has better performance than others was computed for other reflected angles.

  • PDF

Performance Test of Combustor for Aeropropulsion Gasturbine Engine (항공추진용 가스터빈엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Jeon, Byoung-Ho;Yang, Su-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.405-406
    • /
    • 2008
  • Combustor is one of the major component of gas turbine engine and its development is done mostly by performance test. Combustors for aviation gasturbine engines has been successfully tested at the test facility in KARI as well as for stationary gasturbine engines. Full scale combustor test requires large amount of high temperature and pressure air, so the test facility is equipped with big air compressor and heater.

  • PDF

Viscous Flow Analysis around a Wind Turbine Blade with End Plate and Rake (풍력터빈 날개의 끝판과 레이크 효과에 대한 점성유동장 해석)

  • Kim, Ju-In;Kim, Wu-Joan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Turbulent flow analysis around a wind turbine blade was performed to evaluate the power performance of offshore wind turbine. Fluent package was utilized to solve the Reynolds-averaged Navier-Stokes equations in non-inertial rotating coordinates. The realizable k-$\varepsilon$ model was used for turbulence closure and the grid system combining structured and unstructured grids was generated. In the first, lift and drag forces of 2-D foil section were calculated and compared with existing experimental data for the validation. Then torque and thrust of the wind turbine blade having NACA 4-series sections were calculated with fixed pitch angle and rpm. Tip speed ratio was varied by changing wind speed. In the next, three kinds of end plate were attached at the tip of blade in order to increase the power of the wind turbine. Among them the end plate attached at the suction side of the blade was found to be most effective. Furthermore, performance analysis with tilt angle and rake was also performed.