• Title/Summary/Keyword: 터빈 냉각

Search Result 190, Processing Time 0.031 seconds

가스터빈 공기냉각용 고온 풍동 시험설비 및 측정기술 소개

  • Lee, Jeong-Ho
    • Journal of the KSME
    • /
    • v.57 no.11
    • /
    • pp.39-43
    • /
    • 2017
  • 최근 정부의 친환경 에너지 정책에 따라 고효율 가스 복합 발전이 기존의 석탄 화력 복합 발전을 대체하는 추세에 있다. 발전용 가스터빈의 효율 향상에 따라 터빈 입구온도는 현재 $1,600^{\circ}C$에 이르러 가스터빈의 냉각 부하가 크게 증가되어 고온에서의 가스터빈 냉각 기술이 더욱 중요하게 되었다. 이 글에서는 고온에서 가스터빈 공기냉각 기구를 개발하고 냉각 성능 평가에 필요한 고온 풍동 시험설비 및 측정기술을 간략하게 소개하고자 한다.

  • PDF

Characteristics of the Shaped Hole Film Cooling in Gas Turbine (가스터빈에서 변형홀을 사용한 막냉각 특성 해석)

  • 이동호;김병기;조형희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.7-7
    • /
    • 1998
  • 가스터빈 엔진의 효율 및 성능은 터빈입구온도에 크게 좌우되므로, 높은 열효율을 얻기 위하여 최근 가스터빈 엔진은 높은 입구온도(대략 1400-150$0^{\circ}C$)에서 작동되도록 설계되고 있다. 이는 요소재질의 열한계점을 훨씬 상회하며, 이와 같은 입구온도의 고온화 경향은 터빈요소에 대한 열부하를 증가시키고 있다. 따라서 극한의 작동조건하에서의 허용수명 및 안정성의 유지를 위해서 내부대류냉각, 충돌세트냉각과 더불어 막냉각기법이 많이 응용되고 있다. 막냉각기법은 연소기 벽면 혹은 터빈블레이드 표면의 작은 구멍들을 통해서 압축기의 공기를 분사하여 표면에 고온의 유체와 일종의 단열벽을 형성하여 표면을 보호하는 냉각방법이다. 지금까지는 주로 단면적이 일정한 막냉각홀에 대한 연구가 주가 되어왔으나, 이러한 막냉각홀을 이용하는 경우 많은 문제점이 발생한다.

  • PDF

Influence of Precooling Cooling Air on the Performance of a Gas Turbine Combined Cycle (냉각공기의 예냉각이 가스터빈 복합발전 성능에 미치는 영향)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.171-179
    • /
    • 2012
  • Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state-of-the-art F-class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off-design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

Performance Prediction of Steam Injected Gas Turbine Cycle (증기분사 가스터빈 시스템의 성능예측)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.22-30
    • /
    • 1993
  • 증기분사 가스터빈 시스템의 성능예측 모델을 상용모사기인 ASPEN 코드를 이용하여 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각공기가 터빈 성능에 미치는 영향은 적절한 상관 관계식을 도입하여 평가하였다. 본 예측 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 제시하였고, 증기 분사량 및 터빈 냉각변수 변화에 따른 예측결과를 통하여 가스터빈 시스템 설계기준을 제시하였다.

  • PDF

가스터빈 고온부 정비기술

  • 김승태
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.51-58
    • /
    • 1994
  • 가스터빈 발전은 연료를 연소하여 연소가스로 직접 터빈을 회전시켜 터빈에 연결된 발전기에 의해 발전하는 방식으로 연료로는 중유, 원유, 경유, 가스등을 사용한다. 주요설비는 공기압축기, 연소기, 터빈 및 발전기로 구성되며 이중 고온부는 연소기와 터빈이다. 가스터빈의 효율은 터빈입구온도(TIT : TBN INLET TEMP)에 의존하는데 현재까지 약 1,30$0^{\circ}C$ 급의 가스터빈이 운전중이며 앞으로 1,50$0^{\circ}C$ 급의 고효율 가스터빈에 도전하고 있으며 연소가스의 고온화는 고온부의 재료개발, 냉각기술, 코팅기법의 향상과 더불어 이루어질 수 있다. 가스터빈의 고온부 부품인 연소기, 터빈의 동익(Moving blade) 및 정익(Fixed blade) 재료로 초내열합금이 계속 개발중이며 또한 각 부품에 대한 공기냉각기술, 코팅재료 및 기법도 개발중이다. 그러나 현재 국내에서 가동중인 가스터빈은 빈번한 기동정지로 열 사이클에 의한 부품의 손상이 심각한 실정이므로 고효율 가스터빈 개발과 이에 대한 정비기술 개발이 병행하여야만 안정된 전기공급을 이룰 수 있다는 차원에서 가스터빈은 고온부품의 정비기술에 대한 그 현황과 전망에 대해 살펴보고자 한다.

  • PDF

A Simulation Method for Predicting the Performance and the NOx Level of Gas Turbine System (가스터빈 시스템의 성능 및 NOx 배출 예측을 위한 모사방법)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • 가스터빈 사이클의 성능 및 NOx 배출물 생성량 예측을 위한 모사 프로그램을 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각방식이 성능에 미치는 적절한 상관 관계식을 도입하여 평가하였다. 본 성능평가 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 검증하였고, 증기 분사량, 터빈 냉각변수 및 압축비 변화에 따른 예측결과를 통하여 가스터빈 시스템 최적 운전 및 설계기준을 제시하였다.

  • PDF

Off-design Characteristics for Ambient Air Temperature and Turbine Load of Gas Turbine Pre-swirl System (가스터빈 프리스월 시스템의 외기 온도와 터빈 부하 조건에 따른 탈설계점 특성 분석)

  • Park, Hyunwoo;Lee, Jungsoo;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.881-889
    • /
    • 2019
  • The pre-swirl system is the device that minimizes energy loss of turbine cooling airflow from the stationary parts into rotating parts. In this paper, an off-design analysis was conducted for the ambient air temperature and turbine load conditions. The discharge coefficient was constant for ambient air temperature and turbine load. However, adiabatic effectiveness was increased. This is due to the volume flow rate. The volume flow rate was increased at higher ambient temperature and higher turbine load. It means that the volume of cooling air was increased and the cooling performance of the air was improved. Consequently, adiabatic effectiveness increased by 30.46% at 100% turbine load compared to 20% turbine load. And increased by 18.42% at 55℃ ambient air temperature compared to -20℃ ambient air temperature.

천연가스 복합발전 플랜트의 성능예측

  • Lee, Jin-Wook;Lee, Chan;Cho, Byeong-Hwa
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.55-63
    • /
    • 1994
  • 국내에서 실제 운전되고 있는 천연가스 복합발전플랜트의 성능 예측에 대한 공정전산 해석을 수행하였다. 가스터빈 사이클은 압축기, 연소기, 터빈 및 터빈 날개의 냉각을 위한 냉각계통으로 구성하였으며, 중기터빈 사이클은 폐열회수보일러, 고압/중압/저압터빈, 펌프 및 부속공정으로 구성하였다. 해석결과는 실제 플랜트의 운전자료와 정성적 및 정량적으로 잘 일치하였으며, 폐열회수보일러의 적절한 설계에 의하여 전체 플랜트의 출력향상을 도모할 수 있음을 제시하였다.

  • PDF

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

Turbine Cooling Design for the Development of High Efficiency Cooling Turbine (고온 고효율 냉각터빈 개발을 위한 냉각 설계 기술)

  • Cho, Hyung-Hee;Kim, Kyung-Min;Park, Jun-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.675-676
    • /
    • 2011
  • To improve efficiency and allowable life of gas turbine, the proper cooling techniques are needed. It is required not only the basic research of variable cooling techniques but also analysis of real operating conditions when design the cooling system. From this analytical results, we can predict the thermal stress and allowable life. This design process is thermal design techniques that is the most foundational design techniques to improve the efficiency of gas turbine.

  • PDF