• Title/Summary/Keyword: 터빈효율

Search Result 465, Processing Time 0.028 seconds

가스터빈용 고온 열교환기

  • Jeong, Ji-Hwan
    • Journal of the KSME
    • /
    • v.54 no.5
    • /
    • pp.36-39
    • /
    • 2014
  • 이 글에서는 가스터빈의 효율향상을 위해 사용되고 있거나 개발 중인 열교환기들을 소개하고자 한다.

  • PDF

Study on the Monitoring and Control System for Micro Gas Turbine (마이크로 가스 터빈의 감시 제어 시스템에 관한 연구)

  • Cho, Chang-Hee;Park, Min-Kook;Ahn, Jong-Bo;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1733-1735
    • /
    • 2005
  • 최근의 소형 분산 전원의 보급 필요성의 커짐으로 전력과 열에너지를 동시에 생산, 이용함으로서 종합 에너지 효율이 높고 공해 배출 및 소음 특성이 우수한 초소형 가스터빈 발전 시스템에 대한 수요가 급증하고 있다. 본 논문은 마이크로 가스터빈 시스템과 그 제어장치의 동작 상태를 모니터링 및 제어하기 위한 마이크로 가스터빈 감시 제어장치와 사용자 인터페이스 프로그램을 소개한다. 마이크로 가스 터빈은 초고속(수만$\sim$10만 RPM)으로 회전하여 발전을 하므로 터빈 및 전동기 설계 기술과 더불어 고성능의 제어 시스템을 필요로 한다. 마이크로 가스터빈의 감시 제어 시스템은 터빈, 발전기 및 전력 변환장치를 제어하는 고성능의 DSP 제어장치들과 고속 직렬 통신 방식으로 연결되어 시스템의 제어 및 상태 감시를 위한 최적의 솔루션을 제공함으로서 마이크로 가스터빈의 개발자와 운용자의 보조 역할을 담당한다.

  • PDF

Performance Analysis of a 50㎾ Turbo-Generator Gas Turbine Engine with a Recuperator (리큐퍼레이터를 고려한 50KW급 터보제너레이터 가스터빈 엔진의 성능해석)

  • 김수용;수다레프
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.48-55
    • /
    • 1999
  • Performance analysis of a 50KW turbo-generator gas turbine engine with a recuperator was studied. Recuperated cycle has been employed to meet maximum fuel economy and ultra low emissions especially for military and vehicular engines. From thermodynamic stand point, it is known that recuperative cycle can contribute most to enhance thermal cycle efficiency for the Pressure ratios under 10 and of comparatively low turbine inlet temperature. Efficiency of a simple cycle with a recuperator increases relatively about 30% than without one at effectiveness of 0.5. Pressure losses in the heat exchanger less than 5.2% is considered in the design process. A tubular type heat exchanger is selected for this particular engine because it can provide simple construction as well as structural sturdiness and excellent leak tightness.

  • PDF

Performance Analysis of GT/ST Hybrid System for Marine Power Applications(under Conditions of Air-Cooled Gas Turbine) (가스터빈의 냉각공기를 고려한 선박동력용 GT/ST 하이브리드시스템의 성능 평가)

  • Kim, Sun-Hee;Jung, Byung-Gun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.586-594
    • /
    • 2012
  • A future type ship power system requires both economic and eco-friendliness. That is, this should be reduced the discharge quantity of air pollutants and green-house gases as well as have high energy efficiency. Recently, gas turbines have been realized a lot of technical development in terms of efficiency and safety, and are widening the example of their adoption to a GT/ST hybrid system in a power plant as well as an aviation use. This paper reviewed the performance characteristics of a GT/ST hybrid system of several ten MW class, not large capacity, with a simulation in order to evaluate the possibility of a GT/ST hybrid system for ships. The reviewed GT/ST hybrid system has maximum 49 % efficiency, has the highest efficiency point for TIT, and has a 70~75 % and 25~30 % load ratio for a gas turbine and a steam turbine respectively.

Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction (반동도에 따른 증기터빈의 설계 및 성능해석)

  • Shin, Jung-Ha;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1391-1398
    • /
    • 2011
  • Design and performance analysis of a steam turbine for variations of degree of reaction were performed by computer simulation. Design parameters such as blade angles, exit areas, and heights of the nozzle and moving blade were represented as functions of the degree of reaction. The main performance factors such as turbine power, diagram efficiency, and axial thrust were also expressed in terms of the degree of reaction. For further information about the design and performance, the blade angles and main performance factors were investigated as functions of the flow coefficient. The turbine power and diagram efficiency reached a maximum value for a given degree of reaction and flow coefficient, and the symmetric shape of the moving blade showed distortion as the degree of reaction was increased.

특집:에너지플랜트 및 핵심기자재 기술 - 플랜트용 가스터빈 기술

  • Seo, Jeong-Min;Park, Jun-Yeong;Choe, Beom-Seok
    • 기계와재료
    • /
    • v.24 no.1
    • /
    • pp.36-46
    • /
    • 2012
  • 국내 플랜트산업의 낮은 외화가득률의 원인인 낮은 국산화율의 플랜트 기자재 중 하나인 가스터빈은 선진국대비 기술격차가 크고 해외의존도가 높다. 가스터빈은 플랜트 산업에 활용도가 높은 기자재며 특히 오일&가스 플랜트의 경우 upstream에서 downstream에 이르기까지 활용도가 매우 높다. 가스터빈 시장은 연 7.5%의 성장을 보이고 있으며 2015년에는 560억불에 달할 것으로 예상된다. 선진국에서는 ATS, NGST, ETN 등 범국가 단위로 가스터빈 기술을 개발해 왔으며, 최근에는 고효율, 저비용, 친환경 가스터빈 기술향상에 집중하고 있다. 가스터빈 기술은 이제 발전기를 지나 성숙기에 이르고 있지만 국내의 가스터빈 기술은 단위 부품 제작이나 면허 생산 등의 생산 기술에 치우친 초보적인 수준에 머물고 있다.

  • PDF

Numerical Study of the Supersonic Turbine Rotor Tip Variation Effect on the Turbine Performance (로터 팁 간극이 초음속 터빈 성능에 미치는 영향에 대한 전산해석 연구)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.382-386
    • /
    • 2006
  • Three dimensional numerical analysis of the supersonic turbines with different rotor tip clearances was conducted to analyze the effect of the tip gap clearance variations on the turbine performance. The result showed that the turbine performance deteriorates and the tip leakage increases by the effect of the rotor tip clearance and the tip leakage affects turbine performance degradation dominantly.

  • PDF

Waste heat recovery of recirculated MCFC using supercritical carbon dioxide power cycle (초임계 이산화탄소 사이클을 이용한 연료 재순환 MCFC의 폐열회수)

  • Lee, Jae Yoon;Ahn, Ji Ho;Kim, Tong Seop
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.42-45
    • /
    • 2019
  • The molten carbonate fuel cell has a high temperature of waste heat and can constitute a bottoming cycle to increase the efficiency. Previous study used a bottoming cycle as steam turbine cycle. In this study, we are going to replace the bottoming cycle with a supercritical carbon dioxide power cycle. The system power was compared to consider replacing the bottoming cycle. As a result, the power of the supercritical carbon dioxide power cycle at the present development stage is lower than that of the steam turbine cycle, but theoretically, the power can be larger than the steam turbine cycle. If the supercritical carbon dioxide power cycle improves the isentropic efficiency of the turbine by 89%, the isentropic efficiency of the compressor by 83%, and the effectiveness of the recuperator by 0.9, the power can be same to the steam turbine cycle.

Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis (풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교)

  • Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.77-87
    • /
    • 2023
  • Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.

Study on Performance of Vertical-axis Tidal Turbines Applied to the Discharged Channel of Power Plant (조류발전용 수직축 터빈의 방수로 설치에 따른 성능에 관한 연구)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • Thermal and nuclear power plants on shore commonly use the sea water for cooling facility. Discharged cooling water has the high kinematic energy potential due to amount of water flux. Numerical analysis was made to find the suitable combinations between the arrangement of tidal turbines and the overall dimensions of the discharged channel. Several parameters such as the turbine diameter to inlet size, and the axial distance to turbine size were investigated. Power coefficients for various test conditions were also compared to see the effect of inlet configurations such as single inlet and dual inlet. For the single inlet, the mean power coefficient appeared to be gradually decreased with increasing distance, and the maximum power was obtained when the turbine diameter was same as the inlet diameter. For the dual inlet, the tendency was similar so that the better result when the turbine diameter was same as the inlet diameter. It is expected that the present methodology can be extensively utilized to harness the high kinetic energy flow of the discharge channel of power plant.