• 제목/요약/키워드: 터빈형

Search Result 518, Processing Time 0.02 seconds

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Study on Flowmeter Proving Errors of a Small Volume Prover (소형 푸루버의 유량계 검증 오차 연구)

  • 백종승;임기원;최용문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.259-266
    • /
    • 1990
  • Leaks at the piston seal and the by-pass port of a small volume prover have relatively large influence on the proving accuracy in comparison with a conventional ball prover. The pulse interpolator, which is to increase the discrimination, is affected by the characteristic of the flowmeter signal. In this study, a small volume prover of the double cylinder type was designed in order to study the pulse interpolation error as well as the leak error. The basic volume of the prover determined by a water draw method was about 9.68L. Experimental results revealed that interpolation data attained by the repeated piston pass for turbine meters at a fixed flowrate may be treated effectively by applying a statistical method. It was possible to limit the pulse interpolation error less than .+-. 0.02% at the 95% confidence level. However, in the case of the bulk meter, if failed to achieve the required repeatability level because of the pulse characteristics. The basic volume change appeared to be independent of the piston velocity within the .+-. 0.05% of tolerance.

Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test (자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험)

  • Kim, Seoktae;Kim, Donghyun;Kang, Keumseok;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.631-638
    • /
    • 2016
  • Offshore wind power can be an alternative for onshore wind power which suffers from not only civil complaints regarding to landscape damage and noise but also wind power siting due to lack of onshore site candidates. Compared to onshore wind power, offshore wind power is free from these problems considering that generally the sites are far enough from the coast. And more electricity is generated in offshore wind turbines due to abundant offshore wind resources. However high installation costs of offshore turbines could deteriorate the economical efficiency. The main cause of the high installation costs comes from a long-term lease of the heavy marine equipment and the consequential high rental cost. In this paper, the conceptual design of the support structure for offshore wind turbines will be suggested for the installation of them with less heavy marine equipment.

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.

A Safety Improvement for the Design Change of Westinghouse 2 Loop Auxiliary Feedwater System (웨스팅하우스형 원전의 보조급수계통 설계변경 영향 평가)

  • Na, Jang Hwan;Bae, Yeon Kyoung;Lee, Eun Chan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The auxiliary feedwater is an important to remove the heat from the reactor core when the main feedwater system is unavailable. In most initiating events in Probabilistic Safety Assessment(PSA), the operaton of this system is required to mitigate the accidents. For one of domestic nuclear power plants, a design change of a turbine-driven auxiliary feedwater pump(TD-AFWP), pipe, and valves in the auxiliary system is implemented due to the aging related deterioration by long time operation. This change includes the replacement of the TD-AFWP, the relocation of some valves for improving the system availability, a new cross-tie line, and the installation of manual valves for maintenance. The design modification affects the PSA because the system is critical to mitigate the accidents. In this paper, the safety effect of the change of the auxiliary feedwater system is assessed with regard to the PSA view point. The results demonstrate that this change can supply the auxiliary feedwater from the TD-AFWP in the accident with the motor-driven auxiliary feedwater pump(MD-AFWP) unavailable due to test or maintenance. In addition, the change of MOV's normal position from "close" to "open" can deliver the water to steam generator in the loss of offsite power(LOOP) event. Therefore, it is confirmed that the design change of the auxiliary feedwater system reduces the total core damage frequency(CDF).

A Study on Boundary Layer Behavior of an NACA 0012 Airfoil (NACA 0012 에어포일의 경계층 거동에 관한 연구)

  • 양재훈;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.16-23
    • /
    • 2006
  • A study on the boundary layer behavior of an NACA 0012 airfoil at low Reynolds numbers was investigated in order to gain knowledge of a boundary layer that might be employed in a turbine blade and MAVs. A hot-wire anemometer was used to measure the boundary layer of an NACA 0012 airfoil at static angles of attack ${\alpha}$=$0^{\circ}$, $3^{\circ}$, and $6^{\circ}$, and Reynolds Numbers Re=$2.3{\times}10^4$, $3.3{\times}10^4$, and $4.8{\times}10^4$. The results of this study show that the laminar boundary layer on the airfoil surface is attached to the surface at ${\alpha}$=$0^{\circ}$, and the laminar separation of the boundary layer on the airfoil surface occurs at ${\alpha}$=$3^{\circ}$. Furthermore, the reattachment of the boundary layer in the present study occurs for the cases of Re=$3.3{\times}10^4$ and Re=$4.8{\times}10^4$at ${\alpha}$=$6^{\circ}$.

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2007
  • A liquid rocket engine fuel-rich gas generator has been developed for the first time in the country, which can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas is not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator had been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involved precision machining, surface finish, and special welding technique. The final assessment on the characteristics of ignition and combustion had been carried out for two different versions of injector heads. This concluded that the present product satisfies the development requirements such as spatial temperature distribution and the development has been successful.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Moon, Il-Yoon;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.181-185
    • /
    • 2006
  • A liquid rocket fuel-rich gas generator developed for the first time in the country can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas can be used not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator has been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involves precision machining, special surface finish, and welding techniques. The final assessment on the characteristics of ignition and combustion had been carried out through five combustion tests. This concluded that the present product satisfies the development requirements.

  • PDF

A Study on the Eddy Current Loss of the Permanent Magnet for PMSG for the Wind Turbine Application (풍력터빈 적용을 위한 PMSG용 영구자석의 와전류손실에 관한 연구)

  • Choi, Man-Soo;Moon, Chae-Joo;Sun, Rui;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Kwak, Seung-Hun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.8-15
    • /
    • 2014
  • The objective of this paper is to suggest a design topology of permanent magnet synchronous generator with 2,000kW capacities for wind turbine. The suggested topology is to provide 3 split magnet PMSG instead of single magnet, and performed an analysis of eddy current loss and iron loss for suggested type using ansoft maxwell commercial program. The simulation results of suggested magnet type show there duction of eddy current loss as 13.87kW with loadless conditions and23.48kW with rated conditions, but iron loss for rotor yoke show the in creasing trend as2.2kW with loadless conditions and 0.2kW with rated conditions. The suggested 3 split maget type is to identified as more useful for 2,000kW PMSG.