• Title/Summary/Keyword: 터보 과급기

Search Result 37, Processing Time 0.029 seconds

Performance characteristics of turbocharger of diesel engine (디젤 기관의 터보 과급 특성)

  • 이창식;이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 1991
  • 디젤 기관의 출력 성능을 향상시키기 위하여 실린더 내로 흡입되는 공기를 적극적인 방법으로 밀도가 높은 공기로 압입시키는 과급기는 디젤기관의 종합 성능을 결정하는 중요한 인자가 되고 있다. 이와 같은 관점에서 터보 과급기의 성능을 규명하고 과급기의 특성에 관한 사항을 열역학적 해석과 압축기 및 터빈의 성능 특성을 살펴보기로 한다. 여기서는 주로 과급기의 성능 특성을 중심으로 다루기로 한다.

  • PDF

A study on the response characteristics of a turbocharged diesel engine under operation conditions of rapid acceleration (터보과급기 부착 디젤기관의 급가속 운전시 응답특성에 관한 연구)

  • 최낙정;전봉준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.33-41
    • /
    • 1995
  • 본 연구는 터보 과급기 부착 디젤 기관의 급가속 운전시 기관과 과급기의 과도 응답 성능을 규명하고 이를 개선하기 위한 실험을 수행하였다. 과도 응답 성능 구명은 일정한 회전 속도로 정상 운전중인 기관의 연료 펌프 랙을 10%에서 40%까지 일정 시간동안 급가속하였을 경우에 대하여 수행하였으며, 이때의 과급기 응답 지연 현상을 개선하기 위한 실험은 급가속과 동시에 압축기 출구의 흡기메니폴드 내에 일정한 압력의 공기를 추가 분사하는 방법을 이용하였다. 그리고 공기 분사 압력, 공기분사 기간, 가속률, 가속 시간 등이 압축기 출구의 압력과 온도, 터빈 입구의 압력과 온도, 실린더 압력, 기관과 과급기 회전 속도 등의 응답 성능에 미치는 영향을 가속전 정상 상태의 기관 회전 속도와 적용부하의 변화에 따라 시간의 함수로 나타내었다.

  • PDF

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

A Study on Performance and Exhaust GAS Characteristics of the Diesel Engine with Turbocharger and Intercooler (터보 과급기와 중간 냉각기를 장착한 디젤기관의 성능 및 배출가스에 관한 연구)

  • 류규현;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.86-93
    • /
    • 1999
  • Turbocharger has been used to increase the performance of diesel engine, especially ship engine , for years. Recently, the turbocharger is being adopted not only for an agricultural engine but also for an automobile engine. To improve the performance of diesel engine , the problem of the reduction of A/F ratio in high speed should be solved. Turbocharger is well known for its cost effectiveness, reliability and duration . In this study, an experiment was conducted to verify simulation program . The results for natural aspiration engine and turbocharged engine were compared. In order to estimate the characteristics of exhaust gas, D-13 mode was selected. Power, torque and BSFC of turbocharged engine were increased than those of natural aspiration engine by about 48%, 46% and 5%, respectively . The components in exhaust gas except NOx from turbocharger engine were less than the amount set up for 2000-year regulation.

  • PDF

A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine (터보과급 디젤기관의 과도운전시 응답성능에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1575-1582
    • /
    • 1992
  • This study describes the response performances of actual engine speed, turbocharger speed, air mass flow rate through engine, boost pressure ratio, exhaust temperature and combustion efficiency for a six-cylinder four-stroke turbocharged diesel engine during the change in operating conditions by using the computer simulation with test bed. In order to obtain the transient conditions, a suddenly large load was applied to the simulation engine with the several kinds of inertia moment in turbocharger and engine, and engine set speed. From the results of this study, the following conclusions were summarized The inferior response performances was mainly caused by turbocharger lag, and air mass flow rate and boost pressure ratio were closely related to the turbocharger speed. A reduced moment of turbocharger inertia resulted in less transient speed drop and much faster recovery to the steady state of the engine. The increase of moment of engine inertia reduced cyclic variation of engine speed. When a large load was applied to the engine at high speed, the engine could be fastly recovered. However, when the same load was applied to the engine at low speed, the engine was stalled.

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Technical trend of supercharger for automobile (자동차용 기계구동 과급기의 기술동향)

  • 오박균;김향우;박동규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 1993
  • 오늘날 자동차용 엔진에 대한 사용자의 요구는 여러가지가 있지만 그 중에서도 손쉬운 운전, 고 출력화, 응답(response)의 향상 등의 요구는 지금 이후로도 계속되리라 생각된다. 슈퍼차저도 이러한 요구에 의하여 사용되고 있으며 이제는 엔진의 보조적 향상책으로 뿐만 아니라 엔진에 있어서 필요 불가결한 것으로써 확실히 정착되리라 생각된다. 본 고에서 살펴본 바에 의하면 스크류식 슈퍼차저가 테스트된 4종류의 슈퍼차저중에서 가장 나은 성능, 과급압, 토르크를 주고 있으며, 또한 가장 소형이며 경량이다. 또한 스크류로타는 팽창기로써 효율 높게 작용할 수 있어, 이의 채용으로 기존의 터보콤파운드시스템 보다 8-10% 에너지 효율이 높게됨이 알려지고 있다. 그러므로 스크류로타를 이용한 터보콤파운드시스템은 기존의 어떤 시스템보다도 효율이 높은 시스템으로 발전할 수 있는 가능성이 높아 이의 연구가 적극 추진되어야 하겠다.

  • PDF

An experimental study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린의 열전달에 관한 실험적 연구)

  • 최영돈;홍진관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.664-675
    • /
    • 1990
  • In this study, the performance test and heat transfer experiment for a 4 cylinder and 4-cycle turbocharged gasoline engine were carried out in order to measure the heat transfer coefficient at the inner wall of the combustion chamber. From the result of heat transfer experiment, the energy balance of the fuel energy and the overall efficiency of the turbocharger were calculated, The variation of them was investigated as well with the engine operation conditions.

Mass Flow Rate Measurement of Pulsating Flow in a Twin-Scroll Turbocharger (트윈스크롤 터보과급기에서 맥동유동의 질량유량 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.723-729
    • /
    • 2019
  • Turbochargers are an effective device to reduce the fuel consumption. In this study, the mass flow rate of pulsating flow in the twin-scroll turbocharger for the gasoline engine of passenger vehicles was measured. Pulsating flow was achieved using a pulse generator and the mass flow rate of the unsteady pulsating flow was analyzed by comparing it with those of the steady flow. The pulse generator consisted of a rotating upper plate and a fixed lower plate. To measure the mass flow rate of unsteady flow, the orifice flow meter equipped with the difference pressure transducer was used. To analyze the low speed performance of the turbocharger, the measurement was carried out in the speed of turbocharger from 60,000rpm to 100,000rpm. The mass flow parameters of the unsteady pulsating flow showed a large difference compared to those of the steady flow. Those of the unsteady flow showed the hysteresis loop surrounding the mass flow parameters of the steady flow and the maximum variation of the mass flow parameters were 5.0 times those of the steady flow. This phenomenon is the result of the filling and emptying the turbine volute space due to pulsating flow.