• Title/Summary/Keyword: 터보펌프 (turbopump)

Search Result 265, Processing Time 0.022 seconds

Hydrodynamic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Hydrodynamic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested using water. It is experimentally shown that the inducer had very small effect on the pump's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump reached a critical cavitation number when the inducer head dropped by 55%.

High-temperature Low-cycle Fatigue Life prediction of a Liquid Rocket Turbopump Turbine (액체로켓 터보펌프 터빈의 고열 저주기 피로수명 예측)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.18-21
    • /
    • 2009
  • The life of components under high thermal load is typically shorter than other components. The turbopump turbine of liquid rocket is operated under these environments like high temperature and high centrifugal dorce due to high rotating velocity during operating time. These conditions may often cause low-cycle fatigue problem in the turbopump turbine. First of all, to analyze heat stress, ABAQUS/CAE is used and Coffin-manson's equation is used to consider elasticity and plasticity strain. S.W.T's method is used to consider the mean stress effect, using strain history, low-cycle fatigue analysis is done for turbopump turbine which may have FCL(fracture critical location). In this paper, strain life method is applied to analyze low-cycle fatigue.

  • PDF

Numerical Study on the Effect of Cavity Vanes to Control the Axial Thrust of a Turbopump (터보펌프 축추력 조절용 캐비티 베인에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han;Noh, Jun-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.39-43
    • /
    • 2006
  • The magnitude of the axial force acting on turbopump bearings has a great influence on the operational reliability and service life of a turbopump. In the turbopump under current investigation the cavity vanes are introduced to the pump shroud casing to control the axial thrust of the turbopump. To investigate the effect of the cavity vanes, 3D computational flow analyses for a propellant pump stage including an inducer, impeller, volute and secondary flow passages are performed with and without the vanes. The results show that the cavity vanes are very effective in reducing the magnitude of axial thrust without notable changes on the overall performance of the turbopump.

Numerical Study on the Effect of Cavity Vanes to Control the Axial Thrust of a Turbopump (터보펌프 축추력 조절용 캐버티 베인에 대한 수치해석적 연구)

  • Noh, Jun-Gu;Choi, Chang-Ho;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.354-358
    • /
    • 2005
  • The magnitude of the axial force acting on turbopump bearings has a great influence on the operational reliability and service life of a turbopump. In the turbopump under current investigation the cavity vanes are introduced to the pump shroud casing to control the axial thrust of the turbopump. To investigate the effect of the cavity vanes, 3D computational flow analyses for a propellant pump stage including an inducer, impeller, volute and secondary flow passages are performed with and without the vanes. The results show that the cavity vanes are very effective in reducing the magnitude of axial thrust without notable changes on the overall performance of the turbopump.

  • PDF

Evaluation of Friction Torque for a Turbopump Ball Bearing (터보펌프 볼 베어링의 마찰 토크 평가)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • Rolling contact ball bearings are utilized almost exclusively for liquid propellant rocket engine turbopump. Turbopump ball bearings are required to endure high speed and high load for a poor lubricated condition in cryogenic environment. To evaluate bearing heat generation performance, friction torque is investigated as a function of rotation speed, bearing load and cooling flow rate through an experimental study using water coolants. Radial and axial loads are simultaneously applied to the test bearing by gas pressurized cylinder rod. Endurance performance of bearing has been also verified under the bearing required load for operating condition during total accumulated test time 2,100 sec.

Mechanical Face Seal Performance Test for 75ton Class Turbopump (75톤급 터보펌프 기계평면 실의 작동 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.187-191
    • /
    • 2009
  • A leakage performance test and an endurance performance test of a 75 ton class turbopump mechanical face seal are performed using water under high speed and high temperature environment. A prototype mechanical face seal is manufactured for the purpose of sealing of fuel between a fuel pump and turbine. By simulating operating condition experimentally, the leakage rate and seal carbon wear rate are obtained to evaluate the performance of the prototype mechanical face seal. The test results show the acceptable leakage performance and reasonable wear tendency as well.

Study on the Mechanical Property of Turbopump Material (터보펌프 소재의 기계적 물성치 검토에 관한 연구)

  • Lee, Kwan-Ho;Jeon, Seong-Min;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.346-352
    • /
    • 2003
  • The study was performed to search on alternative material for turbopump parts made of Russian material by analyzing and comparing chemical and mechanical material properties. Iron base material was generally used for turbopump. This material can be categorized into stainless steel and heat resisting steel by quantity of additional elements. Each steel was also classified into austenite steel, ferrite steel, and martensite steel. Alternative materials for turbopump inducer, impeller and casing are chosen by JIS SUS 631 and 321 as a result of this study. Because the material of Russian turbopump turbine may be developed by Russia itself, alternative material can be hardly found. However, Inconel 718 for turbine material is thought to be proper in the aspect of hardness considering general use of this material for turbopump turbine in Japan and France.

  • PDF

A Study of Chill-down Process in 30 tonf Turbopump-Gas Generator Coupled Tests (30톤급 터보펌프-가스발생기 연계시험에서 예냉 절차 연구)

  • Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Seung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.447-450
    • /
    • 2012
  • An analysis of chill-down process was performed for 30 tonf Turbopump-Gas generator coupled tests. The chill-down process must be fulfilled before liquid rocket engine test using cryogenic propellant. Cavitation, damage and/or combustion instability due to bubble of propellant must be eliminated by chill-down process in a test specimen, especially cryogenic pump. The analysis of test data obtained by 30 tonf TP-GG coupled tests was performed in order to be based on the test process of KSLV-II liquid propellant rocket engine which will be developed. To macroscopically understand the process of chill-down from the viewpoint of test procedure the temperatures of important part and total time of chill-down process were analyzed.

  • PDF

Operational Characteristic of Liquid Rocket Engine by Cavitation Instability at Low Inlet Pressure Condition (낮은 입구압력 조건에서 캐비테이션 불안정성에 의한 액체로켓엔진의 작동 특성)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.93-100
    • /
    • 2020
  • The turbopump of the liquid rocket engine adapts an inducer to minimize the cavitation due to the variations of the propellants supply condition. However, the inducer introduces cavitation instabilities which are well-known problems in the engine development. In this paper, operational characteristics by the cavitation instabilities are analyzed and the reliability of the engine is checked when the first stage engine of the KSLV-II is tested at the low inlet pressure conditions. The characteristic frequencies representing the cavitation instabilities of the LOx pump are clearly found in various high frequency sensor signals around the entire engine in addition to the LOx and fuel pump.

Performance Prediction of a Turbopump System (유동해석을 이용한 터보펌프 성능 예측)

  • Choe, Chang-Ho;Hong, Sun-Sam;Kim, Jin-Han;No, Jun-Gu;Kim, Dae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.70-75
    • /
    • 2006
  • The performance of a turbopump system composed of an inducer, an impeller, a volute and seals has been computationally analyzed. To save the computational time, only one flow passage of the inducer and impeller is considered for the computations. A steady mixing-plane method is used on the impeller/volute interface for simulating the unsteady interaction phenomena. The axial thrust is predicted from the turbopump calculation in its entirety, which is necessary for such estimation. Moreover, the effects of each component on the pump performance are investigated at a design condition through the analysis of flow structures. The predicted performance is in good agreement with experimental data in terms of head rise, efficiency and volute wall pressure distributions despite of highly complex flow structures being present. The computational results also show that the axial and radial thrusts are within the design limit although corresponding experimental measurements were not taken.