• Title/Summary/Keyword: 터보축엔진

Search Result 77, Processing Time 0.022 seconds

Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps (액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.

Performance Analysis of Smart UAV Engine through Flight Tests (비행시험을 통한 스마트무인기 엔진 성능 분석)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.389-392
    • /
    • 2011
  • In this study, the engine performance data was extracted and analyzed through the flight test of Smart UAV which is tilt rotor aircraft. The flight test was conducted for the transition flight regime where the tilt angle of prop-rotor varies from 90 degree to 0 degree and vice versa. The engine performance data such as engine power and specific fuel consumption gathered from flight tests were compared well with the results of engine performance analysis program.

  • PDF

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle) which is being developed by KARI (Korea Aerospace Research Institute). For teeming the NN(Neural Network), a BPN(Back Propagation Network) with one hidden, one input and one output layer was used. The input layer has seven neurons: variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer uses 6 neurons: degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine, respectively, Database for network teaming and test was constructed using a gas turbine performance simulation program. From application of the learned networks to diagnostics of the PW206C turboshaft engine, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine (75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • A LOX pump rotordynamic design was performed for a 75 ton thrust liquid rocket engine. Axial positions of an inducer, an impeller and bearings on a shaft are decided on the basis of the experience achieved by previously developed turbopump which has the similar layout. The result of pump hydraulic design was reflected in the present study to decide axial length of the inducer and impeller. A distance from the rear bearing to the impeller was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds and bearing stiffness to investigate critical speed of the LOX pump. From the numerical analysis, it is found that the LOX pump with the proper bearing loads safely operates as a sub-critical rotor of which critical speed is high enough compared to the operating speed 11,000 rpm.

  • PDF

A Study on Defect Diagnostics for Health Monitoring of a Turbo-Shaft Engine for SUAV (스마트 무인기용 터보축 엔진의 성능진단을 위한 결함 예측에 관한 연구)

  • Park Juncheol;Roh Taeseong;Choi Dongwhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.248-251
    • /
    • 2005
  • In this paper, health monitoring technique has been studied for performance deterioration caused by the defects of the gas turbine. The parameters for performance diagnostics have been extracted by using GSP program for modeling the target engine. The virtual sensor model for the health monitoring has been built of those data. The position and magnitude of the defects of the engine components have been determined by using Multiple Linear Regression technique and the method using the weight in order to diagnose the single and multiple defects.

  • PDF

Development of the Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eunh-Wan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.7-11
    • /
    • 2011
  • A velocity-compounded(VC) turbine for the 75ton turbopump was developed as an improved performance backup for the single-rotor baseline turbine. Curvic coupling was adopted for the power transmission between the rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that VC turbine can generate 20.5% higher specific power than the baseline turbine.

  • PDF

Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect (초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구)

  • Seo, Junhyuk;Kwon, Kilsung;Choi, Ju Chan;Baek, Jehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.153-159
    • /
    • 2015
  • In this study, a 2-W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and analytical and experimental investigations of its potential under actual combustion conditions were performed. An ultra-micro-gas turbine contains a turbo-charger, combustor, and generator. A compressor, turbine blade, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control machined air bearing, and a permanent magnet was attached to the end of the shaft for generation. An analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor heat, which was verified in an actual experiment.

Study on Installed Performance Simulation of Aircraft Gas-Turbine Engine Considering Inlet and Exhaust Losses (흡배기구 손실예측 및 이를 고려한 항공기 가스터빈의 장착 성능모사 연구)

  • Kong, Chang-Duk;Owino, George.Omollo.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-108
    • /
    • 2006
  • Experimental study has been a general way to evaluate inlet and exhaust duct performances, but this is not only costly but also time consuming. Computational simulation is hence replacing experimental study and consequently time and cost saving. This paper therefore aims to investigate typical component performance of the intake and exhaust ducts using 3D representation. In this study a specific inlet and exhaust was modeled and analyzed to estimate its losses and flow field using computational fluid dynamic program with flow visualization capabilities. A process that requires geometry data to be modeled. That allowed for possibility of design trade off in designing phase. Installed performance of a specific turbo shaft engine was finally evaluated with the estimated inlet, exhaust and other accessories losses.

A Study on Fault Detection of Main Component for Smart UAV Propulsion system (스마트 무인기 추진시스템의 주요 구성품 손상 탐지에 관한 연구)

  • Kong, Chang-Duk;Kim, Ju-Il;Ki, Ja-Young;Kho, Seong-Hee;Choe, In-Soo;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). The measurement parameters of Smart UAV propulsion system are gas generator rotational speed, power turbine rotational speed, exhaust gas temperature and torque. But two measurement such as compressor exit pressure and compressor turbine exit temperature were added because they were difficult each component diagnostics using the default measurement parameter. The performance parameters for the estimate of component performance degradation degree are flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network learning and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF