• Title/Summary/Keyword: 터보차져

Search Result 41, Processing Time 0.034 seconds

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

Thermal stress analysis of the turbocharger housing using finite element method (유한요소법에 의한 터보차져 하우징의 열응력 해석)

  • Choi, B.L.;Bang, I.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2011
  • A turbocharger is subjected to rapid temperature changes during thermal cyclic loads. In order to predict the thermo-mechanical failures, it's very important to estimate temperature distributions under the thermal shock test. This paper suggest the finite element techniques with the temperature histories, a constitutive material model and the mechanical constraints to calculate the thermal stresses and plastic strain distributions for the turbine housing. The first step was to develop a simple coupon approach to represent the failure mechanism of the classical design shapes and secondly applied the actual turbocharger to predict and validate the weak locations under the physical engine test.

Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger (중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계)

  • Kim, Hong-Won;Ryu, Seung-Hyup;Ghal, Sang-Hak;Ha, Ji-Soo;Kim, Seung-Kuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.517-524
    • /
    • 2005
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the mean1ine prediction method, geometric design and performance curve for compressor was done and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and performed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

  • PDF

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, JongSik;Oh, KoonSup;Yoo, KwangTaek
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.33-40
    • /
    • 1999
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffuser and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

Experimental investigation on valve rattle noise of automotive electronic-wastegate turbochargers (차량용 전자식 웨이스트 게이트 터보차져의 밸브 떨림음에 대한 실험적 고찰)

  • Park, Hoil;Eom, Sangbong;Kim, Youngkang;Hwang, Junyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.686-686
    • /
    • 2013
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. In addition to, there is a mechanical noise caused from movement of an actuator, electronically controlling a wastegate valve. It is called as valve rattle noise. The actuator is connected to a valve through a linkage. The noise occurs only if the valve is open, where the linkage is freely contact to neighbor structures without being constrained by any external forces. This condition allows impacts by the pulsation of exhaust gas, and the vibration from the impacts spreads out through turbine housing, causing the rattle noise. The noise is not in mechanical operating wastegate turbochargers because the linkage of an actuator is strongly connected by actuating force. For the electronic wastegate turbocharger, this paper proposed a test device to show the noise generating mechanism with a small vibration motor having an unbalanced shaft. It also shows how to reduce the noise - reduction of linkage clearances, inserting wave washers into a connection, and applying loose fitting in bushing embracing a valve lever to turbine housing.

  • PDF

Noise Diagram of an Automotive Turbo Charger and Its Applications (차량용 터보차져의 소음도표 작성 및 응용)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2010
  • A test facility which can simultaneously measure turbocharger operating condition variables and vibro-acoustic emission in the situations that are quite similar to real internal combustion engine operating conditions has been introduced. Using this facility, a new method sweeping from full open throttle to deep surge region along constant speed curves can be utilized instead of the stationary method that has been traditionally used to obtain turbocharger compressor maps. Data covering an extensive range of the compressor performance map have been collected and analyzed. An experimental study is performed to define a noise diagram that correlates vibro-acoustic measurements to aerothermodynamic operating conditions. An instrumentation set in the facility allows the automatic definition of the operating point on the turbine and compressor map of the turbocharger. Also, radiated sound pressure and casing vibration data corresponding to the point are obtained by a microphone in the vicinity of the compressor casing and an accelerometer on the casing. The major source(s) of noise at specific operating point on the map can be easily identified with these maps. Also, acoustic characteristics of a given turbocharger at the vicinity of the surge as well as in the surge are also defined. Finally, the possibility to define mild surge region of a turbocharger using vibro-acoustic measurements is studied.

The Effect of the Embedded WGV on the Engine Performance for a 2-liter Turbo-charged Gasoline Engine (2 리터급 터보과급 가솔린 기관에서 내장형 WGV가 기관 성능에 미치는 영향)

  • Jang, Jongkwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.232-241
    • /
    • 2016
  • The turbocharger, to decrease the harmful exhaust gas(CO, HC and etc.) and $CO_2$ emission as well as the increase of the engine output, would be an useful method for engine downsizing. Therefore the thermal endurance of turbine blade, the lubrication of turbine shaft and the engine knock according to the supercharge of the inlet air, had been studied. And there had been much progress in these research tasks to be achieved a breakthrough. But a study on the built-in WGV of a gasoline engine for a passenger car which may effect on the engine performance, is few. In this paper, the effect of the embedded WGV on the engine performance was performed through the endurance test, which was conducted more than 300 hrs using the 4 stroke, 1998 cc, water-cooled engine. To sum up the major results, there were an abrasion in the area of the WGV head edge and the thermal deformation on the WGV head face, These phenomena led to reducing the boost pressure which caused the reduction in the volumetric efficiency of the engine. It resulted in decreasing the engine power gradually during the life cycle of the embedded WGV.

Compressor BPF noise reduction for an automotive turbocharger (차량용 터보차져의 컴프레서 BPF 소음 저감)

  • Park, Ho-Il;Eom, Sang-Bong;Seo, Ju-Bong;Lee, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.851-856
    • /
    • 2012
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. The mechanical noises are whine and howling noises, and the aerodynamic noises are BPF (blade-passing frequency), pulsation, surge, some special frequency noises. These noises are bothering passengers because their levels are higher or their frequencies are clearly separated from engine or vehicle noises. The noise investigated in this paper is a BPF noise induced by compressor wheels, whose frequency is the multiplication of the number of compressor wheel blades and its rotational speed. The noise is strongly dependent upon the geometry of wheels and the number of blades. This study tried to apply a groove close to the inlet side of compressor wheels in order to reduce the BPF noise. The groove has successfully reduced the noise of narrow band frequency of a turbocharger. It shows that the groove could reduce the wide band frequency noise, the compressor BPF noise with a best shape of the groove.

  • PDF