• Title/Summary/Keyword: 터널 설계

Search Result 1,602, Processing Time 0.025 seconds

터널 환기시설 단계건설 연구와 터널 방재설비의 설계경향

  • 윤철욱;이상표;김남석
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.30 no.7
    • /
    • pp.19-23
    • /
    • 2001
  • 장대터널내 환기설비의 단계적인 건설방안에 관하여 한국도로공사와 한국건설기술연구원이 함께 수행한 연구내용을 소개하고, 또한 현재 적용되고 있는 방재설비의 설계흐름과 컴퓨터 시뮬레이션을 이용한 제연설비의 설계경향에 대하여 간단히 소개하고자 한다.

  • PDF

TBM 터널과 NATM 터널의 초 근접시공 사례

  • 이인기
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.161-170
    • /
    • 1999
  • 본고에서는 $1986.8\~1988.7$월중에 시공된 부산지하철 1호선 3단계 건설구간 중 서대신동 로타리에서 괴정국민학교 앞까지 연${\cdot}$경암지역에서의 TBM(Tunnel Boring Machine)으로 시행된 단선터널(7.0m)과 NATM으로 시행한 복선터널의 근접시공에 따른 간벽부 보강설계 내용과 근접부 시공시 계측결과 분석, 지보 Pattern조정 및 시공 실적 등을 제시하였다. 원설계 내용 분석 결과 지보 Pattern이 현장 지반조건에 비해 과다하였고 TBM 굴진시 Thrust 2500kN(본 기계 기준) 이상인 연암이상의 지반에서는 TBM 굴착으로의 효율성이 있었고, 경암구간에서 병행터널의 간섭영향을 배제하려면 터널간의 중심거리가 터널직경의 2배 이상이 되어야 하며, TBM 단선터널(7.0m)의 일 평균 굴진 길이는 4.6m로 분석되었다. 앞으로 이와 유사한 암층에서의 터널근접 시공 및 TBM 굴착시 본 분석내용이 참고가 되기를 기대하여 본고를 작성하였다.

  • PDF

터널에서의 지하수 용수량 및 배수용량에 관한 특성

  • Kim Rak-Hyeon;Lee Dae-Yeong;Bae Gyu-Jin;Yang In-Jae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.312-315
    • /
    • 2006
  • 배수공법으로 터널을 설계할 때 다양한 지질조건에 따라 터널내로 유입되는 지하수 용수량과 배수관의 배수능력을 비교 검토하였다. 기존 설계 기준에 의한 터널 배수관은 다양한 지질조건을 가지는 대수층의 수리전도도에 따라 안정성 여부가 달라지는 것을 알 수 있었다. 기존 배수관 (${\Phi}300m/m$)으로 터널을 설계할 경우 투수성이 좋은 석회암 구간 및 파쇄대 구간에서는 문제가 생길 가능성이 높고, 풍화 받지 않은 암반층의 경우에는 터널길이 20km까지 지하수 용수량을 수용 가능한 것으로 판단된다.

  • PDF

New Observational Design and Construction Method for Rock Block Evaluation of Tunnels in Discontinuous Rock Masses (불연속성 암반에서의 터널의 암반블럭 평가를 위한 신 정보화설계시공법)

  • Hwang Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.1-10
    • /
    • 2006
  • Rock masses in nature include various rock discontinuities such as faults, joints, bedding planes, fractures, cracks, schistosities, and cleavages. The behavior of rock structures, therefore, is mainly controlled by various rock discontinuities. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which cannot be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the rock excavation. The observational design and construction method of tunnels in rock masses is becoming important recently. In this paper, a new observational design and construction method for rock block evaluation of tunnels in discontinuous rock masses is proposed, and then applied to the tunnel based on actual rock discontinuity information observed in the field. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed far the new observational design and construction method. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports. The effectiveness of the proposed observational design and construction method has been verified by the confirmation of key block during the enlargement excavation.

Development of Knowledge-based Study on Optimized NATM Lining Design System (지식기반형 NATM 라이닝 최적 설계 시스템 개발)

  • Song, Ju-Sang;Yoo, Chung-sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.251-265
    • /
    • 2018
  • This paper concerns the development of an optimized NATM secondary lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its lining dimension easily without any further FEM calculations.

Development of design charts for concrete lining in a circular shaft (원형수직구 콘크리트라이닝 단면설계도표 개발)

  • Shin, Young-Wan;Kim, Sung-Soo;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2010
  • Recently, requirement of a long subsea tunnel has increased due to political, economical and social demands such as saving of distribution costs, improvement of traffic convenience, and regional development. Road and railroad tunnel need a shaft for construction and ventilation because of increase of tunnel length. Shaft diameter, lining sectional thickness and rebar quantity have to be determined for design of concrete lining in the shaft. A lot of structural analyses are needed for optimal design of concrete lining considering shaft diameter, load conditions and ground conditions. Design charts are proposed by structural analyses for various conditions in this study. A sectional thickness and rebar quantity can be easily determined using the proposed design charts.

A study on the estimation of safety in long railway tunnel (장대 철도터널에서의 방재 안전성 평가에 관한 연구)

  • Kim, Young-Geun;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.287-298
    • /
    • 2007
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures get longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest on safety in long tunnel has been growing and the safety standard for long tunnels is tightening. For that reason, at the planning stage of a long tunnel, the optimum design of safety facility for minimizing the risks and satisfying the safety standard is required. For the reasonable design of a long railway tunnel considering high safety, qualitative estimation for tunnel safely is required. In this study, QRA (Quantitative Risk Analysis) technique is applied to design of a long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design was carried out to verify the QRA technique for two railway tunnels.

  • PDF

Interference and Re-Inflow of Contaminated Air in Successive Tunnel (연속터널에서의 오염물질 재유입 및 환기영향평가)

  • Kim, Young-Geun;Kim, Woo-Sung;Wye, Yong-Gon;Kim, Nam-Yung;Lee, Ho-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.115-134
    • /
    • 2003
  • Recently, there are many cases in the roadway design for successive tunnel with small distance between two tunnels. In this case, the degree of interference for successive tunnels is a significant consideration in the design of ventilation systems. Also, Re-inflows of contaminated air in successive tunnel make serious ventilation problems in case of fire accident in the tunnel. In this study, for successive tunnels in Donghae highway project, the concentration of contaminant such as CO, NOx and Smoke were calculated by numerical analysis using 1D and 3D-CFD analysis. And, the rate of re-inflow at the portals of successive tunnel according to the direction of wind were analysed.

  • PDF

A study on the performance-based design methodology for tunnels through case study on the tunnel built by the prescribed design (사양중심의 터널 설계 사례 연구를 통한 성능기반 터널 설계 방안에 관한 고찰)

  • Hur, Jin-Suk;Kim, Seung-Ryull;Hwang, Je-Don;Seo, Young-Wook;Jung, Myung-Keun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.415-429
    • /
    • 2013
  • Performance-based design is becoming a key word for structure design in architectural and civil engineering spheres. In this paper, the need of the performance-based design, especially for tunnels, was enhanced by case study on the largely deformed cut-and-cover arch tunnel built by the prescribed design. In addition, this paper introduces effective method of subdivision on tunnel performance to help field engineer's comprehension. Case study dealing with the issue of typical backwards problem in geotechnical engineering was examined. First of all, the outline of the damaged culvert as well as the surrounding embankment is in detail described. The background, together with the cause of damage, is discussed based on the results of site investigation. Secondly, it was attempted to elucidate the deformation mechanism of the embankment by means of numerical analysis, and the countermeasures are proposed. Finally, the stability of the embankment with the countermeasures was evaluated.