• Title/Summary/Keyword: 터널의 안전율

Search Result 135, Processing Time 0.025 seconds

The Simulator Study on Driving Safety while Driving through the Longitudinal Tunnel (차량시뮬레이터를 이용한 장대터널 주행안전성 연구)

  • Ryu, Jun-Beom;Sihn, Yong-Kyun;Park, Sung-Jin;Han, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.149-156
    • /
    • 2011
  • Considerable evaluation is needed to design a new longitudinal tunnel in advance because it damaged drivers' driving safety and heightened the possibility of traffic accidents with its physical characteristics. Specifically, considering traffic psychological and ergonomic factors was very important to prevent the difficulty of maintaining safe speed, the increase of the drowsy driving, the fatality of traffic accidents, and subjective feelings such as anxiety while driving a car through the tunnel, from design to construction. This study dealt with driving safety evaluation of an original road alignment design for the longitudinal tunnel (length: above 10km) with a driving simulator, and helped us to improve an original road alignment design and make an alternative road alignment design with presenting risky districts. The results of experiment showed that inflection points were revealed more risky districts, because they impaired driving safety and elevated driver workload while driving a car through around the inflection points of two-way route. Finally, the limitations and implications of this study were discussed.

Analysis of the Stability and Behavior of a Calcareous Rock Slope During Construction of a Tunnel Entrance (터널출입구 시공에 따른 석회암 사면의 안정성 및 거동 분석)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.283-292
    • /
    • 2013
  • A calcareous rock slope failed during excavation of the slope for construction of a tunnel entrance. The slope is located at the construction site for widening highway in Yeongwol, Korea. Field surveys, laboratory tests, and numerical analyses were performed to determine the reason for the slope failure. The numerical analysis revealed that the safety factor of the slope before construction of the entrance was less than 1, and that this decreased after construction. After construction of the entrance, the sliding zone of the slope increased and slope stability decreased because the shear strain and plastic zone in the slope over the tunnel entrance showed an increase relative to the lower part of the slope. To enhance the stability of the slope for construction of the tunnel entrance, countermeasures such as rock bolts, rock anchors, and FRP (Fiber glass Reinforced Plastic) grouting were adopted in light of the field conditions. Serial field monitoring performed to confirm the reinforcing effects of the adopted countermeasures revealed a small amount of horizontal deformation of the slope soils, most of the elastic deformation that can regain its former value. In addition, the axial forces of the rock bolt and anchor were more strongly affected by slope excavation during construction of the tunnel entrance than by tunnel excavation or the rainy season, and the axial forces tended to converge after excavation of the tunnel. Therefore, we can confirm that the slope is currently safe.

Stability Analysis of Rock Slope in Limestone Mine by Numerical Analysis (수치해석에 의한 석회암 채굴 사면의 안정성 해석)

  • 임한욱;김치환;백환조
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.270-278
    • /
    • 2001
  • Two numerical methods such as DEM and FDM were adopted to analysis of rock slope stability, of which dimensions are about 150 m(length), 58 m(height), 70°dip, in Halla limestone mine. For this rock slope stability analysis, strength reduction method was used to calculate the safety factor of slope through numerical method. To keep the rock slope safely, it is proposed to reduce the height of the rock slope from 58 m to 45 m and to reduce the angle of the slope from 70°to 55°, too.

  • PDF

A study on the effect of ground conditions of room and pillar method on pillar and room strain (격자형 지하공간의 지반조건이 암주와 룸 변형률에 미치는 영향에 대한 연구)

  • Ham, Hyeon Su;Kim, Yong Kyu;Park, Chi Myeon;Lee, Chul Ho;Kim, YoungSeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.577-587
    • /
    • 2021
  • Room and Pillar method is an underground facility construction method that maximizes the strength of the in-situ ground. In order to secure the safety of the underground space, it is necessary to secure the safety of the room actually used in addition to the safety of pillar of the room and Pillar method. In this study, the evaluation method for the safety of the room and rock pillar in the room and pillar method was studied through numerical analysis. Numerical analysis was performed for a total of 125 cases using ground conditions, pillar width, and room width as parameters, and the results were derived. As for the safety factor of the pillar, it was confirmed that the safety factor increased when the strength of the ground increased, and it was confirmed that the increment in the safety factor decreased when the width of the pillar was widened. The room strain was evaluated by applying the Critical strain. As the width of the pillar became narrower, the Critical strain was higher, and as the width of the room became smaller, the Critical strain was smaller. As a result of the correlation analysis between the safety factor of the pillar and the room strain, it was possible to derive the upper limit of the room strain that can secure the standard safety factor of the pillar according to the width of the pillar. It is judged that the results derived from this study can be used as a guideline to secure the safety of the room when the actual design is performed in consideration of the ground conditions and room width.

Slope Stability Assessment and Factor Analysis of Surface Mines due to Blasting (발파로 인한 노천광산 사면안정성 평가 및 인자분석)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.98-107
    • /
    • 2020
  • In surface mining, it is very important to create a mining area for economical mining. This study examined the contribution of design factors on slope stability with different slope design and blasting conditions. The design factors were the properties of the rock, the slope angle and the bench height, and the blasting conditions were reflected at different explosive weight and distances. The safety factor of slope was calculated by shear strength reduction method through 3D modeling, and the contribution rate of rock slope was 94.8%, which is relatively higher than other design factors, slope angle 0.89%, bench height 0.58%, and blasting It is shown that it affects about 3.73%, and it can be seen that blasting at a close distance can affect the stability of the slope.

Development of a Rock Slope Analysis Software Considering Ground Water Level (지하수의 영향을 고려한 사면 해석 소프트웨어 개발)

  • Yang Hyung-Sik;Ha Tae-Wook;Kim Won-Beom;Choi Mi-Jin;Lee Jine-Haeng
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.213-222
    • /
    • 2005
  • In this study, an artificial neural network was used to predict stability of weak rock slopes with various discontinuities and underground water conditions. Input data were provided by UDEC analyses on 108 cases of representative conditions of different slope heights, angles, discontinuity angles and water levels. The verification shows high correlation $(r^2-=0.97)$ between analyses and predictions. The program was able to predict safety factors with the same accuracy from unlearned data sets.

Significance of In-Situ Stresses in Stability Analysis of Underground Nuclear Waste Disposal Repository (방사성 폐기물 지하처분장의 안정성 분석에 있어서 암반내 초기응력의 역할과 의미)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.26-31
    • /
    • 2007
  • The 11 nuclear power plants have been taking charge of more than 40% of the total electrical power development in Korea. In addition to the existing nuclear power plants at Gori, Wolsung, Youngkwang, etc., the 12 nuclear power plants are expected to be newly established until 2006. So, the 23 nuclear power plants will produce the electric power as much as more than 50% of the national gross production. However the nuclear power plants are inevitably generating the detrimental atomic wastes. Therefore the disposal techniques for the nuclear wastes should be ensured considering a very high safety factor. According to the basic researches in KAERI, the underground disposal repositories are reported to be most favorable for Korea. The KBS-3 disposal system has been strongly suggested by KAERI and this system has a deep tunnel with several disposal boreholes in tunnel floor. The nuclear wastes, which are sealed tightly in a canister, will be disposed in these boreholes. Considering the disposal tunnel in a great depth, the in-situ stress regimes will affect severely the tunnel stability. Consequently the effect of the in-situ stresses on the disposal tunnel and the role of the in-situ stresses in tunnel stability analysis are examined by the numerical studies.

Analysis for Mechanical Behavior of GFRP Rock Bolt for Permanent Support of Tunnel (영구 터널지보재로서의 활용을 위한 GFRP 록볼트의 역학적 거동 분석)

  • Sim, Jong-Sung;Kang, Tae-Sung;Lee, Yong-Taek;Kim, Hyun-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.124-131
    • /
    • 2010
  • Rock Bolt generally utilizes deformed reinforcing bar welded from structural steel of which strength is higher than required for making advantageous use of the support function of ground. In the condition with highly corrosive underground water, however, problem frequently occurs on tunnel and slope stabilization in terms of repair, rehabilitation and maintenance issues due to the destruction of Rock Bolt by corrosion of steel. A structural performance evaluation for GFRP Rock Bolt was conducted for the purpose of resolving the foregoing problem and at the same time developing a permanently-usable support material. This study intended to evaluate the safety factor of GFRP Rock Bolt by implementing the slope stability interpretation via structural analysis on the basis of its structural characteristics derived from both tensile force function test and shear force function test. It is judged based on the results that GFRP Rock Bolt would secure sufficient ground stability as an alternative material for existing Steel Rock Bolt.

Calculation of Key Blocks' Safety Ratio based on Discontinuity Analysis (불연속면 분석에 근거한 쐐기블록 안전율 계산)

  • Kim, Eunsung;Noh, Sanghun;Lee, Sang-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.101-108
    • /
    • 2024
  • A system with the ability to recognize potential key blocks during tunnel construction by analyzing the rock face was developed in this study. This system predicts the formation of key blocks in advance and evaluates their safety factors. A laser scanner was used to collect a three-dimensional point cloud of the rock face, which was then utilized to model the excavation surface and derive the joint surfaces. Because joint surfaces have specific strikes and dip angles, the key blocks formed by these surfaces are deduced through iterative calculations, and the safety factor of each key block can be calculated accordingly. The model experiments confirmed the accuracy of the system's output in terms of the joint surface characteristics. By inputting the joint surface information, the calculated safety factors were compared with those from the existing commercial software, demonstrating stable calculation results within a 1% error margin.

Improved Effects of Steel Pipe Reinforced Multi-Step Grouting Method Using the Nonlinear 3-D Tunnel Analysis (3차원 터널해석에 의한 강관보강형 다단그라우팅의 보강효과)

  • Lee, Bong-Ryeol;Kim, Hyeong-Tak;Kim, Hak-Mun
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-20
    • /
    • 1996
  • In this study it was analyzed by 2-D FEM and 3-D FEM to evaluate the ground reinforceing effect of steel pipe reinforced multi -step grouting (SPRG) technique and the behavior of ground in the vicinity using the nonlinear FEM program for the ground condition of alluvium located on the top of tunnel applied by SPRG technique. It was found that the nonlinear 3-D analysis performed better than 2-D analysis in evaluating the usefulness of the SPRG technique, and it was also found that the safety was relatively secured by the stiffness of steel pipe to distribute the concentrated stress in the tunnel faceing. It was reported that the change of settlement on the top of tunnel becomes about 40% of the total expected settlement before tunnel faceing reaches tunnel gauging point, and 60% of the total expected settlement while tunnel facing passes tunnel gauging point and takes a distance about tunnel diameter. With the aid of the SPRG technique the control range of displacement and stress of the ground in the vicinity could be reached up to tunnel top, namely depth ratio from 0.38 to 0.83 or 2D(D : tunnel diameter) before the tunnel facing, and about 20% of settlement control in this particular case was possible.

  • PDF