• Title/Summary/Keyword: 터널시공관리

Search Result 214, Processing Time 0.029 seconds

A study on efficient management of the drainages of underground tunnels for environmentally friendly urban railway systems (도시철도 친환경 지하터널 배수형식의 효율적인 유지관리 방안 검토)

  • Baek, Jong-Myeong;Hong, Jong-Hun;Kim, Han-Bae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1982-1990
    • /
    • 2010
  • Excepting tunnel of dorimstream - ccachimountain station section, the subway line No.2th section was build using ASSM and NATM methods because of soil pressure and land condition. The way of dealing underground water was selected without sufficient preconsideration of geographical features, ground condition, influence of lowing underground water, and long-term cost of running maintenance so that the form of undrained tunnel was build having decreased construction characteristics and technically improper elements. The form of partial drainage is very difficult to manage structures of tunnel, because water leakage, water pressure causing cracks of lining concretes and scaling are constantly happened. so partial drainage suggest that setting reinforced Anchor Bolt to prevent buoyancy and should increase center drainage way up to height of railroad. Partial drainage suggest that holey pipe(${\phi}$350mm) manhole, drainage checking pipe manhole are should be regularly dredged, when changing roadbed(gravel${\rightarrow}$concrete) drainage checking pipe manhole should be build and setting a limitation of entering underground water's quantities. Beside drainage degree in changed section of structures causing instability of structures is continuous degree. so if efficient drainage way and the patterns of flaws, problems are considered in survey, it will be expected to have a advantage condition in maintenance part.

  • PDF

GIS Application for Planning Roadway Construction (도로 공사의 시공계획을 위한 GIS의 적용)

  • Kang Sang-Hyeok;Seo Jong-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.565-568
    • /
    • 2003
  • Roadway construction planning processes involve a large amount of information on design, construction methods, quantities, unit costs, and production rates. GIS (Geographic Information System) is a strong tool for integration and managing various types of information such as spatial and non-spatial data required for roadway construction planning. This paper proposes a GIS-based system for improving roadway construction planning with its 'Spatial Analysis' and 'Visualization' functions. The proposed system cail help construction planner make a proper decision in a unique way by integrating design information and construction information within the system and creating design element modules for space scheduling purposes in real-time with its 'Interactive Planning' function.

  • PDF

A Study on Field Testing Methods of Compressive Strength for Shotcrete Quality Control (숏크리트 품질관리를 위한 현장 압축강도시험법에 관한 연구)

  • Chang Seok-Bue;Hong Eui-Joon;Moon Sang-Jo
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.175-186
    • /
    • 2005
  • 터널공사에서 숏크리트는 가장 중요한 지보재 이므로 시공중 품질관리를 위한 압축강도시험은 매우 중요하다. 현장 타설 숏크리트의 압축강도는 실험실조건에 비하여 낮은 값을 갖고 있어 현장강도 시험은 필수적이나, 적절한 시험방법의 부재로 인하여 코어채취에 의한 압축강도시험이 적용되고 있다. 이 방법은 적절한 샘플채취와 초기강도 측정에 큰 문제점을 가지고 있다. 따라서, 본 논문에서는 공기압식 핀관입시험법을 고찰하였으며, 압축강도시험의 단점을 해소할 수 있는 점하중강도시험법의 적용성을 검토하였다. 또한, 향후 연구계획으로써, 현장강도시험기법으로 선정된 공기압식 핀관입시험기의 적정성 평가와 숏크리트 압축강도시험을 대체할 수 있는 점하중강도시험의 적용성 분석계획을 제시하였다.

  • PDF

A Case Study on Buckling Incidents of Steel Liner under External Water Pressure (외수압에 의한 강관 라이닝 좌굴 사례 연구)

  • Chung, Kyujung;Chung, Kyungmun;Shin, Hyohee;Kim, Daeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.13-20
    • /
    • 2011
  • The main objective of this paper is finding the influence factors and their degree of importance to steel liner's safety by investigating and evaluating the buckling incidents of steel tunnel liner under external water pressure. The study was based on the detailed investigation to the design conditions and incident shapes at 2m diameter waterway tunnel with a partially buckled internal steel liner and concrete backfilled lining as the raw water transmission pipe line of regional water supply project. Appropriate buckling theory capable of applying this incident points was selected by referring the existing literature and compared with the results of investigation. Also, hydrogeological characteristics of this site on buckling pressure was evaluated. The result of this study was shown that both the hydrogeological characteristics of upper geologic layers and proper tunnel construction are important factors on buckling at steel liner, and hydraulic gradient level should be decided according to the hydrogeological characteristics. This incident case analysis on steel liner of pressurized waterway tunnel was expected to provide more information for realizing the problems and improvements at each design, construction and maintenance stages.

Evaluation of the blast-restriction zone to secure tunnel lining safety (터널라이닝 안전관리를 위한 발파제한영역 평가)

  • Shin, Jong-Ho;Moon, Hoon-Ki;Choi, Kyu-Cheol;Kim, Tae-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 2009
  • In urban areas, blast excavation adjacent to tunnels is carried out frequently. It is generally required to secure static and dynamic stability of nearby tunnel structures for any such activities. Although there is some national guidelines for static safety, there is little guides to risk zoning controling the dynamic behavior of the underground structures. In this study, impacts on the blast-induced vibration are investigated using numerical study. An attempt to define the restricted area of blast adjacent to subway tunnels was also made. Particular concerns were given to tunnel depth and ground types. By carrying out the parametric study on depth and ground patterns, the envelope of blast distance of which dynamic response on the lining is controlled under 1 cm/sec, is established. It is shown that the increase in depth has increased the required safety distance slightly until the distance of 3.5 times of the tunnel diameter. Despite small changes in safety distance, it can be generally said that the effects of depth and stiffness of the ground is not significant in controlling the particle velocity of the tunnel linings.

고속도로공사 재해유형에 따른 안전확보기법 연구(고속도로 공사를 중심으로)

  • 양학수;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.197-203
    • /
    • 2002
  • 고속도로란 지역과 지역을 연결한 간선도로로 장거리 통행을 주 교통으로 하여 지정된 진출입외에는 완전히 출입을 제한한 자동차 전용도로이다. 영문으로는 freeway, Expressway, Motorway등으로 표기한다. 고속도로 건설은 정부투자 기관인 한국도로공사(Korea Highway Corporation)에서 공사를 발주하여 주로 대형건설업체들이 시공하고 있으며, 이에 대한 시공관리는 대개 도로공사 건설사업소 단위로 시행하고 있다. 고속도로 건설공사의 개략적 구성을 보면 토공, 구조물공, 배수공, 터널공, 부대공 등으로 형성되고 있으며, 시공형태는 대형화, 기계화 되어감에 따라 재해의 유형도 변화가 일고 있다.(중략)

  • PDF

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.

Consideration for Solution of a Difficult Problem and Application of CM.VM in Blasting Excavation for Korea-China and Korea-Japan Sea Bottom Tunnel (한중.한일 해저터널 발파굴착의 난제해결과 CM.VM 적용에 대한 고찰)

  • Shin, Chang-Yong;Ahn, Myung-Seog;Park, Ho-Kyung
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • A plan of construction of subsea tunnels connecting Korea-Japan and Korea-China have been discussing over the past several ten years. This paper were wrote about the present capacity of our engineer, the cooperation plan of politics and economy. Especially we examined and studied resolution method and technical problem in the construction of Sub-sea tunnel. In terms of excavation technology, Blasting and water resistance technology should be cared considering the status of rock such as fault in the deep sea. After of a construction work, it should be carefully designed and constructed for the fire and leakage management in Tunnel, It should be applied to High Construction Management Professional and Value Management(CVS) etc.

Risk management applicable to shield TBM tunnel: I. Risk factor analysis (쉴드 TBM 터널에 적용 가능한 리스크 관리: I. 리스크 요인 분석)

  • Hyun, Ki-Chang;Min, Sang-Yoon;Moon, Joon-Bai;Jeong, Gyeong-Hwan;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.667-681
    • /
    • 2012
  • In general, risk management consists of a series of processes or steps including risk identification, risk analysis, risk evaluation, risk mitigation measures, and risk re-evaluation. In this paper, potential risk factors that occur in shield TBM tunnels were investigated based on many previous case studies and questionaries to tunnel experts. The risk factors were classified as geological, design or construction management features. Fault Tree was set up by dividing all feasible risks into four groups that associated with: cutter; machine confinement; mucking (driving) and segments. From the Fault Tree Analysis (FTA), 12 risk items were identified and the probability of failure of each chosen risk item was obtained.