• Title/Summary/Keyword: 터널붕괴위험도

Search Result 36, Processing Time 0.02 seconds

A Study of RMR in Tunnel with Risk Factor of Collapse (터널 붕괴 위험도에 따른 RMR 연구)

  • Jang, Hyong-Doo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.333-340
    • /
    • 2011
  • RMR is most strongly adopted rock classification method to scheme support system in domestic tunnel. However the RMR, which is based on geological survey during design stage of tunnel, can't present the real ground accurately. In this study, authors suggested Weighted-RMR (W-RMR) which is considered weighted value of risk factors of collapse due to prevent collapse and roof falls during tunneling. According to the application of W-RMR to Bye-Gye tunnel, we could change support type flexibly by the risk factors on a face of tunnel.

Quantitative evaluation of collapse hazard levels of tunnel faces by interlinked consideration of face mapping, design and construction data: focused on adaptive weights (막장관찰 및 설계/시공자료가 연계 고려된 터널막장 붕괴 위험도의 정량적 산정: 가변형 가중치 중심으로)

  • Shin, Hyu-Soung;Lee, Seung-Soo;Kim, Kwang-Yeom;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.505-522
    • /
    • 2013
  • Previously, a new concept of indexing methodology has been proposed for quantitative assessment of tunnel collapse hazard level at each tunnel face with respect to the given geological data, design condition and the corresponding construction activity (Shin et al, 2009a). In this paper, 'linear' model, in which weights of influence factors are invariable, and 'non-linear' model, in which weights of influence factors are variable, are taken into account with some examples. Then, the 'non-linear' model is validated by using 100 tunnel collapse cases. It appears that 'non-linear' model allows us to have adapted weight values of influence factors to characteristics of given tunnel site. In order to make a better understanding and help for an effective use of the system, a series of operating processes of the system are built up. Then, by following the processes, the system is applied to a real-life tunnel project in very weak and varying ground conditions. Through this approach, it would be quite apparent that the tunnel collapse hazard indices are determined by well interlinked consideration of face mapping data as well as design/construction data. The calculated indices seem to be in good agreement with available electric resistivity distribution and design/construction status. In addition, This approach could enhance effective usage of face mapping data and lead timely and well corresponding field reactions to situation of weak tunnel faces.

Quantitative preliminary hazard level simulation for tunnel design based on the KICT tunnel collapse hazard index (KTH-index) (터널 붕괴 위험도 지수(KTH-index)에 기반한 터널 설계안의 정량적 사전 위험도 시뮬레이션)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Kim, Dong-Gyou;Bae, Gyu-Jin;Lee, Hong-Gyu;Shin, Young-Wan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.373-385
    • /
    • 2009
  • A new indexing methodology so called KTH-index was developed to quantitatively evaluate a potential level for tunnel collapse hazard, which has been successfully applied to tunnel construction sites to date. In this study, an attempt is made to apply this methodology for validating an outcome of tunnel design by checking the variation of KTH-index along longitudinal tunnel section. In this KTH-index simulation, it is the most important to determine the input factors reasonably. The design factor and construction condition are set up based on the designed outcome. Uncertain ground conditions are arranged based on borehole test and electro-resistivity survey data. Two scenarios for ground conditions, best and worst scenarios, are set up. From this simulation, it is shown that this methodology could be successfully applied for providing quantitative validity of a tunnel design and also potential hazard factors which should be carefully monitored in construction stage. The hazard factors would affect sensitively the hazard level of the tunnel site under consideration.

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Recovery Execution in Collapsed Face of Soil-Tunnel Entrance When One-Way Driving (토사터널 1방향 굴진 시 발생한 갱구부 막장 붕락 보강사례)

  • Woo, Sang-Baik;Park, Jong-Ho;Lee, Hong-Sung;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.536-549
    • /
    • 2005
  • 국내 대부분을 차지하고 있는 NATM의 주요원리는 주변지반의 지보효과를 활용하는 터널굴착공법이다. 따라서 실제 지반조건이 원설계조건 보다 역학적으로 불량한 경우 보강공법의 적용은 필수적이라 할 수 있으나, 합리적인 설계변경은 현실적으로 쉽지 않은 실정이다. 또한 현실적인 이유로 양방향으로 터널을 관통하는 설계법과 달리 종종 1방향 굴진으로 터널을 관통하는 경우가 있다. 그러나 이러한 1방향 굴진은 불가분 굴진 종점부에서 저토피 갱구를 향하게 되므로, 지반이 연약한 경ㅇ우 막장 붕괴의 위험이 매우 높은 것으로 알려져 있다. 본 터널은 설계 시 갱구부 지반을 풍화암과 연암으로 보고 설계 하였으나, 실제 굴착 시 확인된 지층은 핵석을 포함한 실트질모래(SP-SM)로 판명되었다. 더구나 터널굴진 방향에 있어서도 양방향 굴착이 아닌 저토피 갱구를 향한 1방향 굴진을 실시하였으며, 이러한 시공 중에 터널관통을 불과 19m 남겨둔 갱구부에서 막장부괴와 동시에 상부사면 함몰이 발생하였다. 본 연구는 토사터널 갱구부 1방향 굴진 시 발생한 막장붕괴 보강사례로서, 지상보강(시멘트밀크 그라우팅)과 갱내보강(방사상 FRP보강그라우팅) 그리고 인버트폐합을 실시하여 성공적으로 터널시공을 완료한 사례연구이다. 본 사례는 향후 토사터널 갱구부의 설계와 시공에 유용한 참고자료가 될 것이다.

  • PDF

Prediction of Long-term Behavior of Tunnel in the Presence of Geological Anomalies (지질이상대가 존재하는 구간에서의 터널의 장기거동 예측)

  • Hoki Ban;Heesu Kim;Jungkuk Kim;Donggyou Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.8
    • /
    • pp.13-20
    • /
    • 2023
  • Tunnelling through the geological anomalies has widely known to have many difficulties such as bottom heave, crack of lining, squeezing and so on. To stabilize the tunnel during the construction or after construction, various reinforcing methods have been introduced and applied such as micropiling at the bottom of tunnel to prevent the bottom heave. In this study, long-term behavior of tunnel in the presence of geological anomalies was predicted using numerical analyses. To this end, material properties for swelling rock model capable of representing the rock swelling behavior was obtained using matching process with measured data to validate the adopted model. After the model validation, simulations were performed to predict the long-term behavior of tunnel in the geological anomalies.

A Study on Engineering Characteristics of Weak Rock Ground happened TBM Jaming accident in Tunnelling (TBM 터널 굴진시 Jamming이 발생되는 지반의 공학적 특성에 대한 연구)

  • Yu, Gil-Hwan
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.45
    • /
    • pp.60-70
    • /
    • 2008
  • Mechanized tunnelling by TBMs has been extensively adopted for last two decades. Nevertheless, only few case histories have been reported. Unlike NATM tunnels, the case histories of the weak zone have been seldom reported for the mechanized tunnelling, even in the other countries. In this study, a collapse of TBM tunnel occurred in the severely altered weak rock zones between volcaniclastic rocks and granitic rocks was briefly described. A systematic geotechnical investigation, which was performed to examine the cause of the collapse, was carried out at the site and then characteristics of the rocks in the zones were evaluated. Moreover, This study propose a guide line of estimateing the possibility of collapse in TBM tunnels through comparing experimental results with surveying results of general rocks.

  • PDF

A risk analysis for the determination of a tunnel support pattern (터널 지보패턴 결정을 위한 위험도 분석)

  • You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.241-250
    • /
    • 2003
  • Rock mass is very inhomogeneous in nature and data obtained by site investigations and tests are very limited. For this reason, many uncertainties are to be included in the process of constructing structures in rock mass. In the design of a tunnel, support pattern, advance rate, and excavation method, which are important design parameters, must be determined to be optimal. However, it is not easy to determine those parameters. Moreover if those parameters are determined incorrectly, unexpected risk occurs such as decrease in the stability of a tunnel or economic loss due to the excessive supports etc. In this study, how to determine an optimal support pattern and advance rate, which are the important tunnel design parameters, is introduced based on a risk analysis. It can be confirmed quantitatively that the more supported a tunnel is, the larger reliability index becomes and the more stable the tunnel becomes. Also an optimal support pattern and advance rate can be determined quantitatively by performing a risk analysis considering construction cost and the cost of loss which can be occurred due to the collapse of a tunnel.

  • PDF