• Title/Summary/Keyword: 터널단면

Search Result 385, Processing Time 0.022 seconds

A Numerical Study on the Reinforcement Method of a Pillar Using Tension Bolts at the Connecting Part between 2-Arch Tunnels and Parallel Tunnels (2-Arch 터널과 병렬 터널 접속부에서의 텐션볼트를 사용한 필라 보강 방법에 대한 수치해석)

  • Park, Yeon-Jun;Choi, Jae-Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.470-486
    • /
    • 2015
  • Two-arch tunnels require minimal spacing between the 2 tunnels and thus occupy small amount of land compared to parallel tunnels. But it is rather expensive. The parallel tunnel is not as expensive, but it requires more land than 2-arch tunnels. This may cause a problem when there is a land shortage. The new design is to connect these two types of tunnels by another pair of parallel tunnels where the separation distance is gradually increasing. The applicability of this new design to the cases where rock condition is not even fair has to be verified since the width of the pillar between the connecting tunnels can be quite narrow. Therefore both two and three dimensional numerical analyses were conducted and pillar stability was examined for rock classes IV and V in two different ways. Results showed that this new design is still effective for poor rock conditions if central pillar is properly reinforced by tension bolts as long as overburden is less than five times of the tunnel diameter.

The Effect of Cut-slope on Structural Behavior of Cut-and-Cover Tunnel (굴착경사가 개착식터널의 구조적거동에 미치는 영향에 관한 연구)

  • 유건선
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2001
  • Existing cut-and-cover tunnels are designed regardless of cut-slope under the assumption that the overburden weight of backfill soil acts on tunnel arch and the earth pressure at rest acts on tunnel walls. However, actual earth pressures acting on the tunnel lining depend on open-cut size composed of cut-slope and cut-width, and thus the tunnel lining shows a different structural behavior. This study investigated the effect of cut-slope on structural behavior of the cut-and-cover tunnel lining as follows; Firstly, a comprehensive numerical analysis method using FLAC2D code was used and verified by field measurements of tunnel profile. Secondly, based on the verified numerical analysis technique, earth pressure acting on the lining, and displacement and sectional force developed on the lining were estimated with various shapes of cut-slopes$30^{\circ}\;, 456{\circ},\; 60^{\circ},\; and\;75^{\circ}%). Numerical analysis results indicate that the steeper cut-slope shows the more displacement and moment of the tunnel lining.

  • PDF

A study on the stability analysis for asymmetry parallel tunnel with rock pillar (암반 필라를 포함한 비대칭 근접 병설터널의 안정성 평가에 관한 연구)

  • Kim, Do-Sik;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.387-401
    • /
    • 2007
  • Recently, because of the restriction of land for construction and interference of adjacent structure, parallel tunnels with small clearance have been planned and constructed in many sites. In this case, the stability of pillar at center part is very important factor to satisfy the stability of tunnel structure under the construction. In this paper, numerical analyses for the asymmetry parallel tunnels with a narrow width of pillar have been carried out to search for the optimum reinforcement measure for rock pillar and verify the stability of tunnel. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The analysis of stress state at rock pillar at various cases for construction conditions is required to investigate the structural behaviour of tunnels and stability of the pillar. Strength-stress ratio is calculated based on the failure theory of rock and the safety factor of tunnel is computed with strength reduction technique. Through these numerical results, reasonable reinforcement measures for rock pillar at parallel tunnel were established and recommended.

  • PDF

Effect of widening excavation in divergence section of a double-deck tunnel on its stability (복층터널 분기구 확폭구간 굴착에 따른 안정성 영향)

  • La, You-Sung;Kim, Yunhee;Lee, Kangil;Kim, Yongseong;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.435-450
    • /
    • 2020
  • The divergence section of a double-deck tunnel can be divided into a 'widening pre-divergence section', a large cross-section with a cap shape and a 'post-divergence section' where the separation between the main and the branch tunnel is made. Since the cross-section of the widening pre-divergence section is considerably larger than that of the post-divergence section, the influence of excavation due to the different sizes and shapes in the cross-section should be considered in the examination of the tunnel stability. In this study, the effect of the preceding excavation, that is the excavation of the widening pre-divergence section, on excavation stability of the post-divergence section was examined by varying the excavation methods and bench lengths through 3D finite element analysis. The results showed that although the effects of the excavation methods and the bench lengths are not significant on the variation of principal stresses, the preceding excavation causes a relatively large variation on the stresses which may have an impact on the stability of the post-divergence section from the comparison of Stress-Strength Ratio (SSR) between the cases with and without the consideration of the preceding excavation effect by 2D finite element analysis.

Development of IT-based tunnel design system (IT 기반의 터널 최적 설계를 위한 시스템 개발)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Yoo, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper concerns the development of a knowledge-based tunnel design system within the framework of artificial neural networks (ANNs). The system is aimed at expediting a routine tunnel design works such as determination of support patterns and stability analysis of selected support patterns. A number of sub-modules for determination of support patterns and stability assessment were developed and implemented to the system. It is shown that the ANNs trained with the results of 2D and 3D numerical analyses can be generalized with a reasonable accuracy, and that the ANN based tunnel design concept is a robust tool for tunnel design optimization. The details of the system architecture and the ANNs development are discussed in this paper.

  • PDF

An analytical study on corrugated steel plate lining in cut-and-cover tunnel (개착식 터널에서 파형강판 라이닝 적용을 위한 해석적 연구)

  • Kim, Jung-Ho;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.3-16
    • /
    • 2004
  • A finite element method is used for the force analysis of semicircular arch shaped corrugated steel plate lining. The assessment of stability and behavior for several conditions are executed from the analysis of soil-structure interaction in accordance with CHBDC (Canadian Highway Bridge Design Code, 2000). One fortieth scaled model tests were conducted on the semicircular arch lining to verify the FEM analysis results under the earth-load conditions.

  • PDF

A Study on the Mechanical Characteristics of Tunnel Structures and Ground Behavior by Synthetic Analysis Method with Tunnel Monitoring Results used (터널의 계측결과 종합분석에 의한 지반의 거동 및 터널 구조체의 역학적 특성 연구)

  • Woo, Jong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.115-124
    • /
    • 2003
  • In this study, the relationships between the displacement and stress of the tunnel using various analysis methods were compared with monitoring results carried out during construction and maintenance monitoring. The behavior of tunnel were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel lining. With the results of simplified monitoring observed in top heading and bench excavation tunnel, it is confirmed that the crown settlement is larger than the surface settlement. it is interesting to note that the crown settlement and the crown shotcrete lining stress are widely used monitoring items for the back analysis. It is analyzed that the residual water pressure applied in the drainage type tunnel is reasonable.

터널에서 대구경 무장약공과 선균열을 이용한 심빼기 공법에 관한 연구

  • 김재홍;임한욱
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.63-74
    • /
    • 2001
  • 실린더 컷은 터널 굴착단면의 크기에 관계없이 널리 이용된다. 본 연구에서는 발파당 굴진장을 증대시키기 위하여 종래의 방법과 다른 새로운 방법을 제안하였다. 이 방법의 새로운 패턴은 그림과 같으며, 각 단계별로 상세한 저항선, 공간간격은 별도 그림과 같다. 새로운 실린더 컷 방법과 종래의 방법과의 결과는 다음과 같다. 종래 방법은 굴진장이 천공장의 90-95%인데 비하여 새로운 방법은 대체로 99.5%이다. 비장약량이 1.363kg/㎥에서 1.297로 약 5% 감소되며, 비천공장이 2.393m/㎥에서 2.130으로 약 8% 감소된다. 그밖에 지반진동, 비산, 파쇄암의 크기 등이 종래 방법에 비하여 우수함을 확인하였다.

  • PDF

Prediction of ling concrete thickness for cable tunnel by GPR and impact-echo method (지중레이다와 충격반향기법에 의한 지하 통신구 터널의 라이닝 두께 추정)

  • Kim Hyung-Woo;Han Jin-Woo;Choi Kwang-Chul;Kang Ho-Kyung;Park Jong-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.382-384
    • /
    • 2003
  • 지하 30m 암반에 건설된 통신구 터널의 안전성을 검토하기 위하여 콘크리트 라이닝 두께를 지중레이다(Ground Penetrating Radar)와 충격반향기법(Impact-Echo Method)으로 추정하였다. 지중레이다에 의한 콘크리트 라이닝 단면의 연속적인 화상으로부터 라이닝 두께의 상대적인 변화를 파악하였으며, 라이닝 두께가 얇은 구간은 충격반향 기법에 의해 일정 간격으로 두께를 추정하였다. 터널 천장의 라이닝 두께는 31.85cm, 좌측 및 우측 측벽부의 라이닝 두께는 각각 32.45cm. 32.97cm로서 설계 값인 30cm와 비교적 잘 일치하는 것으로 파악되었다. 지중레이다와 충격반향기법을 조합한 본 방법은 터널 라이닝 콘크리트 두께를 추정하는데 있어서 매우 효율적이고 신뢰성 있는 방법으로 분석되었다.

  • PDF

Suggestion on Reasonable Boundary Conditions for Modeling a Tunnel Shield by Displacement Control Method (변위 제어를 통한 터널 쉴드 모델링의 적정 경계조건 제안)

  • Kim, Jeong-Soo;Kim, Moon-Kym
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.512-515
    • /
    • 2011
  • 터널 해석은 주로 지표침하와 터널 라이닝 내 단면력 산정에 초점이 맞춰지며 이는 시공단계를 고려한 3차원 수치해석 모델을 이용해 결정할 수 있다. 수치해석 시 shield는 응력 제어, shell element로 모델링하는 방법 등으로 모사될 수 있다. 한편 변위 제어를 통한 쉴드 모사는 shield를 적절한 경계조건으로 처리함으로서, 다른 shield 모사 방법에 비해 모델링 작업을 간소화하고 해석의 효율성을 높일 수 있다. 본 연구에서는 변위 제어에 의한 shield 모사를 위한 적정 경계조건을 제안한다. 이를 위해 시공단계가 고려된 유한요소해석을 사용하여, 쉴드 및 굴착면에서의 경계조건 변화와 이에 따른 지표침하 관측 수행하였다. 제안된 shield 변위 제어로부터 얻어진 해석결과를 이론적인 해와 비교함으로서, 제시된 shield 모델링 방법의 적정성과 지반 거동 변화를 평가하고자 한다. 해석 결과는 지반 모델의 지표침하를 기준으로 관찰되었으며, 변위제어에 의한 결과와 요소에 의한 모델링 결과가 유사하게 얻어짐을 보여준다. 또한 변위제어의 쉴드 모사에서 회전 구속보다 변위 구속 조건에 지배적으로 영향을 받음을 확인하였다.

  • PDF