• 제목/요약/키워드: 탱크가압시스템

검색결과 54건 처리시간 0.028초

액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I) (Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I))

  • 정용갑;권오성;조남경;한상엽;조인현
    • 한국추진공학회지
    • /
    • 제11권2호
    • /
    • pp.54-61
    • /
    • 2007
  • 액체로켓추진시스템에서 추진제 가압시스템은 추진제가 저장되어 있는 탱크의 얼리지 공간에 가압제인 가스를 제어된 압력으로 공급하는 것이다. 이러한 추진제 가압시스템의 가장 중요한 설계변수는 가압제를 저장하고 있는 탱크에서 토출되는 가압제의 온도이며, 기체상태인 가압제의 밀도는 토출되는 가압제의 온도에 따라 민감하게 변한다. 일반적으로 고추력을 요구하는 극저온 추진제가 적용되는 추진기관에서는 가압제를 고밀도 고압으로 저장하여 가압제 탱크의 무게를 줄이기 위하여 가압제 저장탱크를 극저온 추진제 탱크 내부에 설치하는 극저온 저장 가압시스템을 사용한다. 본 연구에서는 가압제가 가압제 저장탱크에서 토출 될 때 강하되는 온도 변화를 실험 및 해석을 통하여 고찰하였다. 본 연구에 적용된 유체는 외부유체로 공기와 액체산소 그리고 가압제로 $GN_2$와 GHe를 각각 사용하였다.

추진제탱크 얼리지 해석을 위한 기본모델 (Basic Model for Propellant Tank Ullage Calculation)

  • 권오성;조남경;조인현
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.125-132
    • /
    • 2010
  • 추진제가 배출되는 동안 추진제탱크를 적정 압력으로 유지하기 위해 필요한 가압가스의 질유량 및 총소모량을 파악하는 것은 가압제어시스템의 설계 및 가압제 저장탱크의 무게를 산출하는데 있어 매우 중요하다. 특히 극저온 추진제탱크의 경우 얼리지 내부의 가압가스는 외부와의 열전달에 의해 비체적이 감소하므로 더욱 많은 추진제탱크의 압력을 유지하기 위해 더 많은 가압가스를 필요로 한다. 이에 추진제탱크 얼리지 해석을 위한 기본모델을 만들어 얼리지 내부와 탱크벽면의 온도분포, 가압가스 소모량, 얼리지 내부에서 유입된 가압가스의 에너지 분포를 예측하였다. 현재 시험을 통한 프로그램의 수정보완이 진행되었으나, 본 자료에서는 기본적인 해석모델의 설명에 중점을 두었다.

액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구(II) (Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II))

  • 정용갑;김용욱;김유
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.279-284
    • /
    • 2008
  • 액체로켓추진시스템에서 추진제 가압시스템은 추진제가 저장되어 있는 탱크의 얼리지 공간에 가압제인 가스를 제어된 압력으로 공급하는 것이다. 이러한 추진제 가압시스템의 가장 중요한 설계변수는 극저온 추진제 탱크 내에 설치된 가압제 탱크에서 토출되는 가압제의 온도이며, 기체 상태인 가압제의 밀도는 토출되는 가압제의 온도에 따라 민감하게 변한다. 이전 연구에서는 상온 가압제와 상온 외부유체 간의 온도 상관성에 대한 연구가 수행되었으며, 본 연구에서는 현재 개발 중인 액체로켓추진 발사체의 가압시스템과 동일한 조건인 극저온 가압제(GHe)와 극저온 외부유체(LOX)를 적용하여 가압제 탱크에서 가압제 토출 시 강하되는 온도 변화를 실험 및 해석을 통하여 고찰하였다.

액체로켓추진시스템의 가압제 탱크에서 가압제 토출 시 온도강하율에 대한 연구 (II) (Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II))

  • 정용갑;권오성;조남경;한상엽;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.58-64
    • /
    • 2007
  • 액체로켓추진시스템에서 추진제 가압시스템은 추진제가 저장되어 있는 탱크의 얼리지 공간에 가압제인 가스를 제어된 압력으로 공급하는 것이다. 이러한 추진제 가압시스템의 가장 중요한 설계변수는 극저온 추진제 탱크 내에 설치된 가압제 탱크에서 토출되는 가압제의 온도이며, 기체 상태인 가압제의 밀도는 토출되는 가압제의 온도에 따라 민감하게 변한다. 이전 연구에서는 상온 가압제와 상온 외부유체 간의 온도 상관성에 대하여 수행되었으며, 본 연구에서는 현재 개발 중인 액체로켓추진 발사체의 가압시스템과 동일한 조건인 극저온 가압제(GHe)와 극저온 외부유체(LOX)를 적용하여 가압제 탱크에서 가압제 토출 시 강하되는 온도 변화를 실험 및 해석을 통하여 고찰하였다.

  • PDF

액체로켓 추진기관의 추진제탱크 가압시스템 최적변수 설계 방법 (The Way of Determinating the Optimal Parameters of the Propellant Tank Pressurization Gas in the Feeding System for Liquid Rocket Engine)

  • 베르샤드스키;조기주;임석희;정영석;조규식;오승협
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.62-69
    • /
    • 2005
  • 액체로켓 추진기관의 추진제 공급계 개발을 위한 추진제 탱크 가압시스템의 주요 변수들을 계산하는 설계방법이 본 논문에서 제시되었다 가압 유체의 공급 조건들이 추진제 탱크 내부에서 발생하는 열역학적 프로세스의 효율성에 미치는 영향을 분석하였고 이를 바탕으로 하여 추진제 탱크 입구에서의 가압 유체의 최적 공급온도, 공급 속도를 계산하였다.

위성 발사체 추진제 가압용 열교환기 기초 설계

  • 이희준;한상엽;정용갑;길경섭;하성업;김병훈
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.74-74
    • /
    • 2004
  • 액체추진제를 사용하는 위성 발사체의 경우 추진제탱크에 저장된 추진제를 추력을 발생하는 연소실에 공급하기 위하여 헬륨 등의 가압제를 사용한다. 본 연구에서는 액체추진제 로켓엔진의 산화제인 극저온의 액체산소를 저장하고 있는 탱크 내부에 설치된 별도의 탱크에 저장된 극저온/고압의 헬륨을 고온으로 열팽창 시켜 추진제 탱크로 재유입하여 추진제를 가압하는 시스템에 사용되는 가압제 열팽창용 열교환기의 개발을 위한 기초 설계를 수행하였다. (중략)

  • PDF

가압가스 온도에 따른 극저온 추진제탱크 가압가스 요구량 (Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation)

  • 권오성;김병훈;조인현;고영성
    • 한국항공우주학회지
    • /
    • 제38권12호
    • /
    • pp.1202-1208
    • /
    • 2010
  • 추진제가 배출되는 동안 발사체 추진제탱크의 압력을 유지하기 위해 필요한 가압가스의 요구량을 예측하는 것은 가압시스템의 설계를 위해 반드시 필요하다. 추진제탱크로 유입되는 가압가스의 온도는 가압가스의 요구량에 가장 큰 영향을 미치는 요소로서, 저장탱크의 무게, 열교환기의 크기 등 가압시스템의 개발에 있어 중요한 설계기준이 된다. 이에 극저온 추진제탱크 내에 저장된 추진제를 가압하여 배출하는 실험을 수행하였고, 가압가스 온도 조건에 따른 가압가스 요구량과 얼리지 온도분포를 측정하였다. 그 결과 가압가스의 온도가 높을수록 요구량 자체는 감소하였지만, 이상적인 가압가스 요구량 대비 실제 필요량의 비율은 증가하였다.

운용조건 변화에 따른 추진제탱크 가압가스 요구량 예측 (Prediction of Pressurant Mass Requirement for Propellant Tank with Operating Condition Variation)

  • 권오성;한상엽;조인현
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.54-62
    • /
    • 2011
  • 추진제탱크 가압가스 요구량 예측을 위해 개발된 수치해석 모델을 사용하여 운용조건에 따른 가압가스 요구량 변화를 살펴보았다. 한국형발사체 1단 산화제탱크의 개념설계 결과를 기준 모델로 정하였고, 산화제탱크로 유입되는 가압가스의 온도, 산화제의 체적유량, 산화제탱크 길이 대 직경의 비를 운용 변수로 선정하였다. 가압가스 요구량 및 질량유량, collapse factor, 얼리지 온도분포를 예측하였고, 그 결과 가압가스의 온도가 가압가스 요구량에 가장 큰 영향을 미침을 확인하였다. 또한 얼리지에 대한 에너지 분석을 통하여 추진제탱크의 가압효율을 계산하였고, 유입된 가압가스 에너지 중 추진제탱크 벽면을 통한 열손실이 가장 큼을 확인하였다.

발사체 추진기관 가압시스템 개발 사례 연구 (Study on the Development Trend of Pressurization System for Propulsion System of Launch Vehicle)

  • 신동순;김병훈;한상엽
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.721-724
    • /
    • 2011
  • 터보펌프에서 발생 가능한 cavitation을 동반하지 않으면서 추진제를 요구하는 압력과 유량으로 연소기에 공급하기 위해서는 추진제 탱크에 저장된 추진제를 가압하는 시스템이 필요하다. 가압시스템은 선가압과 주가압으로 분류할 수 있으며, 본 연구에서는 주가압 시스템에 대해서만 언급한다. 추진제탱크 가압 방식에는 가압가스 생성방법과 공급 방법으로 나눌 수 있으며, 가압가스 생성방법으로는 비활성가스 및 극저온 산화제를 기화시켜 추진제탱크에 공급하는 방법이 있다. 본 연구에서는 가압시스템의 분류와 가압 방식에 따른 장단점을 비교하였으며, 특히 발사체에서 사용하고 있는 가압방식 중에서 임펄스 제어방식의 원리와 가압시스템의 특성을 기술한다. 또한 가압시스템의 구성요소인 열교환기의 형상과 구조 및 각 열교환기의 특징에 대하여 설명한다. 본 자료는 발사체 개발단계에서 가압시스템의 기본요구조건 도출과 개념설계 단계에서 활용할 수 있다.

  • PDF

추진제 탱크 가압용 솔레노이드 밸브 개발 시험 (The Solenoid Valve Development Tests for Propellant Tank Pressurization System)

  • 김병훈;고현석;권오성;한상엽
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.813-816
    • /
    • 2011
  • 추진제 탱크 가압 시스템 적용을 위한 솔레노이드 밸브를 제작하여 작동시험 및 기밀시험을 수행하였다. 시험 결과 제작된 모든 밸브에서 작동 시간은 밸브 성능 요구 조건을 만족하고 있다. 그러나 기밀시험 결과 솔레노이드 밸브 내부에서 일부 누설이 있는 것을 발견하였다. 솔레노이드 밸브 분해를 통해 누설은 용접에 의한 Seat면의 손상이 주요 원인이라는 것을 확인하였다. 본 연구를 통해 추진제 탱크 가압용 솔레노이드 밸브 개발 가능성을 확인하였다.

  • PDF