• Title/Summary/Keyword: 탠덤 비행체

Search Result 5, Processing Time 0.013 seconds

Steady Aerodynamic Characteristics of FAST Flying over Nonplanar Ground Surface (비평면 지면을 비행하는 FAST의 정상상태 공력특성)

  • Cho, Yeon-Woo;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • The aerodynamic characteristics of FAST(Future Air Speed Transit) combined the body with tandem wing flying over nonplanar ground surface are investigated by using a boundary element method. To validate the present method, results of the present analysis are compared with the experiment and other numerical results. The arrangement of the tandem wing is determined to secure sufficient aero-levitation force and the stability through the analysis of the aerodynamic characteristics of the FAST. The FAST has the maximum lift characteristics when the tandem wing with lower endplate is located at the front side and the rear side of the body. The stability of the FAST can be secured by using the flaperon of the tandem wing.

Explosion Shock Measurement System of the Precursor Warhead for the Tandem Projectile (탠덤 비행체의 선구탄두 기폭 충격 측정 시스템 구현)

  • Choi, Donghyuk;An, Jiyeon;Kim, Yubeom;Son, Joongtak;Lee, Ukjun;Park, Hyunsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.503-510
    • /
    • 2021
  • This paper presents a system that measures the acceleration of the shock caused by the explosion of the precursor warhead for the tandem projectile. The proposed system, which is implemented based on the MIL-STD-810G, Method 517.1, consists of a miniaturized shock measurement device, a cable, accelerometers, and a trigger circuit. The shock measurement device has a size of ¢102 × 171 mm and cable has a length of 3 m. The operational confirmation test is conducted by implementing the measurement system. The Analysis of shock data(accelerometer output data) is carried out using Shock Response Spectrum(SRS), pseudo velocity and plot of acceleration time transient. Through measurement analysis, one can predict the damage of electronics in projectile when precursor warhead is exploded.

Thrust Enhancement through a Tandem Mode of Flapping Wing in Micro Flow (마이크로 유동에서 플래핑 날개의 Tandem 모드를 이용한 추력향상에 대한 연구)

  • Jang, Sung-Min;Maeng, Joo-Sung;An, Sang-Joon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.605-611
    • /
    • 2011
  • In this study, based on previous studies, the thrust generated by using flapping tandem wings is examined. We studied on the relationship between the parameters for characterizing oscillatory tandem wings (namely, the Strouhal number and Reynolds number) for thrust generation in micro flow regime. At each Reynolds number, Strouhal number, heaving amplitude, distance between tandem wings, and phase difference are varied and the flapping motions of tandem mode are calculated to find the optimum conditions for generating thrust. As a result, comparing with a single flapping mode, we found that the minimum Strouhal number for generating thrust is shifted down up to approximately 25% when the tandem flapping mode is applied.

A Experimental Study of Aerodynamic Interference on Quad-Tilt Propeller UAV Wings in Forward Flight Condition (전진 비행하는 Quad-Tilt Propeller 형상 무인기 날개에서 나타나는 공력간섭 현상에 대한 실험적 연구)

  • Kim, Taewoo;Chung, Jindeog;Kim, Yangwon;Park, Cheolwan;Cho, Taehwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.81-89
    • /
    • 2019
  • In this study, wind tunnel test on Quad-Tilt Propeller which has tandem wings is carried out to analyze the aerodynamic interference effect of front wing and propeller on rear wing during forward flight. Using 6-axis balance system, forces and moments of whole aircraft were measured and using strain gauge at wing root, bending moments were measured to observe change of aerodynamic force of each wings. A 12-hole probe was used to measure the flow field in the wing and propeller wake. Flow characteristics were observed qualitatively through flow visualization experiment using tuft and smoke. To measure the aerodynamic interference by elements, the influence of front wing and propeller on rear wing was analyzed by changing the wings and propellers mount combination.

Unsteady Aerodynamic Analysis of the Wing with Flaperon Flying over Nonplanar Ground Surface (비평면 지면 효과를 받는 플래퍼론이 있는 날개의 비정상 공력해석)

  • Joung, Yong-In;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.369-374
    • /
    • 2007
  • Unsteady aerodynamic characteristics of the wing with flaperon flying over nonplanar ground surface are investigated using a boundary-element method. The time-stepping method is used to simulate the wake shape according to the motion of the wing and flaperon over the surface or in the channel. The aerodynamic coefficient according to the periodic motion of the flaperon is shown as the shape of loop. The rolling moment coefficient of the wing flying in the channel is same as that of the wing flying over the ground surface. The variation range of pitching moment is wider when the wing flies in the channel than over the ground surface. The present method can provide various aerodynamic derivatives to secure the stability of superhigh speed vehicle flying over nonplanar ground surface using the present method.