• Title/Summary/Keyword: 태풍 상륙

Search Result 53, Processing Time 0.026 seconds

Establishment of Compensation Extent of Single Span Greenhouse for Recovering against Natural Disaster (자연재해 복구지원을 위한 단동형 파이프하우스의 규격 범위 설정)

  • Lee, Si-Young;Kim, Jin-Young;Kim, Hyun-Hwan;Jeon, Hee
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.67-70
    • /
    • 2000
  • 우리나라 전체 비닐하우스 면적 50,746 ha 중 단동형 파이프하우스가 차지하는 면적이 90% 이상으로 매우 높은 원예생산 비중을 차지하고 있다. 단동형 파이프하우스는 지리적, 기후적인 차이로 인해 고유한 지역적 특성을 갖고 다양한 형태의 시설로 자리잡고 있지만 철골파이프를 이용한 간이 구조를 갖고 있어 작년 8월 상륙한 태풍 올가에 의해 경남, 전남북, 충남 일대의 많은 면적이 피해를 입었다. (중략)

  • PDF

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.

Typhoon Surge Simulation on the West Coast Incorporating Asymmetric Vortex and Wave Model on a Fine Finite Element Grid (상세유한요소격자에서 비대칭 경도풍과 파랑모형이 고려된 서해안의 태풍해일모의)

  • Suh, Seung-Won;Kim, Hyeon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.166-178
    • /
    • 2012
  • In order to simulate storm surge for the west coast, complex physics of asymmetrical typhoon wind vortex, tide and wave are simultaneously incorporated on a fine finite element mesh extended to the North Western Pacific sea. Asymmetrical vortex based on maximum wind radii for each quadrant by JTWC's best tracks are input in pADCIRC and wave stress is accounted by dynamic coupling with unSWAN. Computations performed on parallel clusters. In hindcasting simulation of typhoon Kompasu(1007), model results of wave characteristic are very close with the observed data at Ieo island, and sea surface records at major tidal stations are reproduced with satisfaction when typhoon is approaching to the coast. It is obvious that increasing of local storm surges can be found by introducing asymmetrical vortex. Thus this approach can be satisfactorily applied in coastal hazard management against to storm surge inundation on low level area and major harbor facilities.

Total Precipitable Water Fields of Typhoons WALT(9407) & FAYE(9503) Derived from TOVS and SSM/I (TOVS 자료로 도출한 태풍(WALT(9407)과 FAYE(9503))에 동반된 총가강수량장)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 1998
  • The total precipitable water fields derived from HIRS(High Resolution Infrared Radiometer Sounder)and MSU(Microwave Sounding Unit) measurements of TOVS and brightness temperature of SSM/I were used to investigate the evolution of moisture fields for the Typhoon WALT(9407) which after landing in Japan it became tropical depression in Korea-Japan Strait, and FAYE(9503) which was the first tropical storm of 1995 to became a typhoon, respectively. The total precipitable water derived from TOVS observations is delineated according to the evolutions of WALT and FAYE movements because total precipitable water fields of TY WALT(9407) and FAYE9\(9503) were largely controlled by horizontal transport of water vapor over the Northwest Pacific Ocean which dominantly plays an important role in maintaining and accelerating their intensities toward Korea and Japan . These fields demonstrated that two major bands, which imply the rain bands, were locally well-organized and similar to the thick convective cloud features over Japan and the Korean peninsula while WALT and FAYE were approaching away and to. But the values of derived TOVS total precipitable water have shown the underestimate of those of SSM/I total comparatively for two typhoons.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Construction of hydraulic flood prediction model for Hyeongsan river (형산강 수리학적 홍수예측 모형 구축)

  • Lee, Jae Yeong;Kim, Ji Sung;Kim, Tae Hyung;Choi, Kyu Hyun;Kim, Chang Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.393-393
    • /
    • 2020
  • 최근 기후변화 등의 영향으로 2019년 우리나라에 영향을 준 가을 태풍은 링링, 타파, 미탁 등 3개로 근대 기상관측이 시작된 이래 가장 많은 가을 태풍이 한반도에 상륙했다. 특히, 경주시는 태풍 미탁으로 인해 97억원의 재산피해와 수해복구에 225억원이 소요될 것으로 예상되어 특별재난지역으로 선포되었다. 이러한 홍수로 인한 피해를 줄이기 위해 환경부에서는 한강, 낙동강, 금강, 영산강 홍수통제소를 설립하여 강우 및 수위관측소를 이용한 홍수에 대한 지속적인 모니터링과 홍수특보 발령 등을 수행하고 있다. 본 연구에서는 하천 홍수에 의한 침수피해를 방지하고자 수리학적 홍수예측 모형을 구축하고 이를 홍수예보에 활용할 수 있도록 하였다. 대상지역인 경주시 형산강 유역에는 현재 14개의 강우관측소와 9개의 수위관측소가 운영되고 있으며, 홍수특보 대상 지점으로 경주시(강동대교)와 포항시(형산교) 2개 지점이 있다. 형산강 유역은 현재 수문학적 홍수예측 모형을 운영하고 있으나 수위관측소 기준으로만 예측이 가능하여 정확한 예보를 위해서는 수리학적 홍수예측 모형을 구축이 필요하다. 수리학적 홍수예측 모형의 구축을 위해서는 현 상황의 하천단면, 횡단구조물 및 변화된 유역환경을 반영할 수 있는 모형의 구축이 필요하기 때문에 2013년에 수립된 형산강 하천기본계획을 참고하였으며, 모형은 홍수통제소에서 운영중인 1차원 수리해석 모형인 FLDWAV를 이용하였다. 또한, 2019년 태풍 미탁 사상을 대상으로 검보정을 실시하기 위해 상류단 경계조건으로는 경주시(서천교) 수위관측소의 유량, 하류단 경계조건으로는 포항항 조위관측소의 조위를 이용하였고 7개의 유역 유출량을 측방유입으로 구성하였다. 본 연구에서 구축된 수리학적 홍수예측 모형을 통해 기존 형산강 유역에 대한 홍수 예보 업무를 보완하여 효과적인 방재대책 마련이 가능할 것이다.

  • PDF

Spatio-Temporal Patterns of Extreme Precipitation Events by Typhoons Across the Republic of Korea (태풍 내습 시 남한의 극한강수현상의 시.공간적 패턴)

  • Lee, Seung-Wook;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.3
    • /
    • pp.384-400
    • /
    • 2013
  • In this study, spatio-temporal patterns of extreme precipitation events caused by typhoons are examined based on observational daily precipitation data at approximately 340 weather stations of Korea Meterological Administration's ASOS (Automated Synoptic Observation System) and AWS (Automatic Weather System) networks for the recent 10 year period (2002~2011). Generally, extreme precipitation events by typhoons exceeding 80mm of daily precipitation commonly appear in Jeju Island, Gyeongsangnam-do, and the eastern coastal regions of the Korean Peninsula. However, the frequency, intensity and spatial extent of typhoon-driven extreme precipitation events can be modified depending on the topography of major mountain ridges as well as the pathway of and proximity to typhoons accompanying the anti-clockwise circulation of low-level moisture with hundreds of kilometers of radius. Yellow Sea-passing type of typhoons in July cause more frequent extreme precipitation events in the northern region of Gyeonggi-do, while East Sea-passing type or southern-region-landfall type of typhoons in August-early September do in the interior regions of Gyeongsangnam-do. These results suggest that when local governments develop optimal mitigation strategies against potential damages by typhoons, the pathway of and proximity to typhoons are key factors.

  • PDF

Characteristics of Meteorological Disasters in the Southern Coast of Korea (우리나라 남해안의 기상재해 특성)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.34-35
    • /
    • 2010
  • The meteorological disasters in the southern coast of Korea were analyzed for 20years from 1989 to 2008 using the Korea meteorological administration's data. The results are summarized as follows. Yearly mean number and the total number of meteorological disasters in the southern coast of Korea during 20 years are 7.5 and 149, respectively. The highest number appears in July followed by August and the third is September. The meteorological disasters from July to September occupied about 42%. The seasonal mean number is most in summer(about 39% of all), the next orders are the autumn, winter and spring. The meteorological disasters in summer are mainly caused by typhoon and changma. The meteorological disasters of a great scale occurred by typhoons(for example, 9112 GLADYS, 0215 RUSA and 0314 MAEMI) which strike in the southern coast of Korea.

  • PDF

An Analysis of Characteristics on Meteorological Disasters in the Southern Coast of Korea (우리나라 남해안의 기상재해 특성 분석)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Characteristics of meteorological disasters in the southern coast of Korea were analyzed for 20 years from 1989 to 2008 using the Korea meteorological administration's data. The main results are summarized as follows. Yearly mean number and the total number of meteorological disasters in the southern coast of Korea during 20 years are 7.5 and 149, respectively. The highest number appears in July followed by August and the third is September. The meteorological disasters from July to September occupied about 42%. The seasonal mean number is most in summer(about 39% of all), the next orders are the autumn, winter and spring. The meteorological disasters in summer are mainly caused by typhoon and heavy rain. The meteorological disasters of a great scale occurred by typhoons(for example, 9112 GLADYS, 0215 RUSA and 0314 MAEMI) which strike in the southern coast of Korea.

Near Real-time Immediate Forecasting of Storm Surge Based on Typhoon Advisories (태풍 예경보에 근거한 폭풍해일 준실시간 즉각 예보)

  • Suh, SeungWon;Lee, HwaYoung;Kim, HyeonJeong;Park, JinSoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.352-365
    • /
    • 2012
  • A primary study on the rapid modeling of storm surge, which is one of typical coastal disasters, for immediate forecasting in conjunction with typhoon advisories is done and tested for the typhoons Bolaven, Tembin and Sanba which attacked to Korean Peninsula on August and September in this year 2012. Semi automatic rapid computations according to JTWC typhoon advisories were performed and uploaded to the web by models SLOSH in PC and ADCIRC in parallel clusters with 64 cores having 57k nodes encompassing the North-Western Pacific region. It only takes 1 and 2 hours from taking advisory to web uploading, respectively. By comparison with observed water surface elevations for the major tidal stations after Bolaven attack it shows within RMS error of 0.17~0.19 m for surge heights and only deviates 1 hour of peak surge time in ADCIRC model. Thus it is concluded that this approach provides a frame of near real-time immediate forecasting of storm surges with satisfactions.