• Title/Summary/Keyword: 태양 일사

Search Result 464, Processing Time 0.024 seconds

An Energy Harvesting and Profiling System for Smart Video Devices (스마트 비디오 디바이스를 위한 에너지 하비스팅 및 프로파일링 시스템)

  • Kang, Doo-sik;Kim, Jun-sik;Park, Keon-woo;Lee, Myeong-jin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2017
  • In this paper, an energy harvesting and profiling system is designed for smart video devices in internet of things environments without dedicated power source. The energy harvesting module provides the harvested energy from solar panel to the smart video device. The energy profiling module measures the battery outflow current and the battery voltage of the smart video device and the consumed energy of processes, and calculate the harvested energy from the energy harvesting module to the smart video device and the total energy consumption of the smart video device. The accuracy of the harvested energy measured by the device energy profiling module is validated by comparing with the calculated energy using the regional solar radiation provided by Korea Meteorological Administration. Energy harvesting data from the designed energy harvesting and profiling system can be used to design the perpetual operation of smart video devices or Internet of Things sensors.

A Sensitivity Analysis about Solar Heat Gain and Heating Load of ZeSH According to Optical Characteristics of Window system (창호의 광학적 특성에 따른 ZeSH의 일사취득 및 난방부하에 관한 민감도 분석)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.66-71
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2002, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48 %, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2

  • PDF

Estimation of the Optimal Generation Capacity of Solar-Wind Hybrid Power System for Economic Operations (태양광-풍력 복합발전시스템의 경제적 운용을 위한 최적 용량 산정에 관한 연구)

  • Lee, Seung-Chul;Moon, Un-Chul;Kwon, Byeong-Gook;Kim, Jong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2004
  • In this paper, a technique that estimate the optimal capacity of the solar-wind hybrid power system for minimizing the total monthly electric power expenses is presented. The hybrid power system is assumed to be operated in connection with the utility power system and electric bill be paid for the power not covered by the hybrid system generation. Monthly generation cost is estimated based on total life-cycle cost analysis. The monthly utility power bill is assumed to be increased quadratically in proportion with the net utility power consumption which is the difference between the total monthly load minus the hybrid system generations. Test results demonstrate applications potential of the proposed technique.

A Study on Development of PV Charging Module for Home Using Master-Slave Method (Master-Slave 방식을 적용한 가정용 PV Charging Module 개발에 관한 연구)

  • Chung, Doyoung;Cha, Insu;Jung, kyunghwan;Kim, Sungmin;Kim, Rakjun;Kang, Byungbok
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • The importance of ESS has been emphasized due to stabilization of power demand due to deterioration of network reliability and expansion of renewable energy sources. ESS (Energy Storage System) stores the remaining power and uses it when necessary to meet the power demand, and build the ESS system mainly in conjunction with solar and wind power. In this paper, we propose a home PV Charging Module using the Master-Slave method which is effective for low insolation. After designing the module, Fast MPPT algorithm is applied to generate the maximum output from the nonlinear output characteristics of the PV modules. The average power value for the input of PV Charging Module was 296.90 W and the output power was 289.60 W, which averaged 97.54%.

Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio (수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향)

  • Kim, Kee Han;Oh, John Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.

An Experimental Study on Indoor Thermal Characteristics in accordance with the Use of Windows and Blinds in Double Skin Facade in Summer (이중외피에서 창문 개폐 및 블라인드 설치에 따른 하절기 실내 열환경 특성 변화 실험 연구)

  • Kim, Dong-Kyun;Yoon, Kap-Chun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • This paper is focused on the effect of indoor temperature rise according to the use of windows and blinds in double skin facade in summer. For the experiment, we set up the mock-up of double skin facede and measuring temperature and solar radiation. Total 7 cases were used for measuring solar transmittance and indoor temperature rise. When the venetian blind was not installed, solar transmittance was 44.5%, and solar transmittance for the case that installed the venetian blind (angle 0) was 22.5%. Cases that opened inner and outdoor windows for ventilation showed lower indoor temperature rise than cases with closed windows. In addition, Case 5 (opened inner and outdoor windows with the venetian blind (angle 0) to reduce solar transmittance) indicated lower indoor temperature rise than Case 3(opened inner and outdoor windows). Consequently, Case 5 which uses inner and outdoor window for ventilation and venetian blind to reduce solar transmittance is the most effective way to reduce indoor temperature rise among all cases tested in this research.

Comparison Analysis of Estimation Models of Hourly Horizontal Global Solar Radiation for Busan, Korea (부산지역에 적합한 시간당 수평면 전일사량 산출모델의 비교분석)

  • Kim, Kee Han;Oh, Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.9-17
    • /
    • 2013
  • Hourly horizontal global solar radiation has been used as one of significant parameters in a weather file for building energy simulations, which determines the quality of building thermal performance. However, as about twenty two weather stations in Korea have actually measured the horizontal global sola radiation, the weather files collected in other stations requires solar data simulation from the other meteorological parameters. Thus, finding the reliable complicated method that can be used in various weather conditions in Korea is critically important. In this paper, three solar simulation models were selected and evaluated through the reliability test with the simulated hourly horizontal global solar radiation against the actually measured solar data to find the most suitable model for the south east area of Korea. Three selected simulation models were CRM, ZHM, and MRM. The first two models are regression type models using site-fitted coefficients which are derived from the correlation between measured solar data and local meteorological parameters from the previous years, and the last model is a mechanistic type model using the meteorological data to calculate conditions of atmospheric constituents that cause absorption and scattering of the extraterrestrial radiation on the way to the surface on the Earth. The evaluation results show that ZHM is the most reliable model in this area, yet a complicated hybrid simulation methods applying the advantages of each simulation method with the monthly-based weather data is needed.

A Study on the Reduction effect of Peak Cooling Load on the Sunshade effect of BIPV System (BIPV 시스템의 차양 효과에 따른 피크 냉방부하 절감효과에 관한 연구)

  • Lee, Chung-Sik;Lee, Eung-Jik;Lee, Chul-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.14-20
    • /
    • 2008
  • As the number of buildings that use the transparent permeation materials as the outer wall is on the increase, the coming amount of the light rays is a lot, and thus the increase in the cooling load and the radiant heat of high temperature may cause the residents to discomfort. In order to reduce such influences, this paper analyzed the installation effects of the sunshade BIPV. The inner temperature of the room installed the sunshade BIPV or otherwise was measured, and compared and analyzed the effects of reducing the cooling load by the incoming light rays. The sample space of the third floor of S university installed the sunshade BIPV has two rooms on the same conditions, and for five sunny days selected in August, the researcher measured the air temperature and the temperature of the fittings with closing the windows to minimize the movement of air without operating the coolers. The maximum cooling load measured by the incoming light rays in the room where the sunshade BIPV was not installed was examined as 459.13kcal/h. It can be understood as the effect of reducing the cooling load according to the incoming rays of the room with sunshade BIPV. Even though the effect of cooling load reduction is not so great in a room, the total reduction in cooling room for the 32 rooms installed the sunshade BIPV was estimated to be 40442.27kcal/day, which will be able to bring the maximum reduction effect of 17.1kW in energy and reduce the investment cost owing to the reduction in cooling load when initially designing the building.

Comparative Analysis on the Characteristic of Typical Meteorological Year Applying Principal Component Analysis (주성분분석에 의한 TMY 특성 비교분석)

  • Kim, Shin Young;Kim, Chang Ki;Kang, Yong Heack;Yun, Chang Yeol;Jang, Gil Soo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.67-79
    • /
    • 2019
  • The reliable Typical Meteorological Year (TMY) data, sometimes called Test Reference Year (TRY) data, are necessary in the feasibility study of renewable energy installation as well as zero energy building. In Korea, there are available TMY data; TMY from Korea Institute of Energy Research (KIER), TRY from the Korean Solar Energy Society (KSES) and TRY from Passive House Institute Korea (PHIKO). This study aims at examining their characteristics by using Principle Component Analysis (PCA) at six ground observing stations. First step is to investigate the annual averages of meteorological elements from TMY data and their standard deviations. Then, PCA is done to find which principle components are derived from different TMY data. Temperature and solar irradiance are determined as the main principle component of TMY data produced by KIER and KSES at all stations whereas TRY data from PHIKO does not show similar result from those by KIER and KSES.

A Proposal of the Prediction Method of Decentralized Power on Climatic Change (기후 변화에 따른 분산 전력 예측 방법 제안)

  • Kim, Jeong-Young;Kim, Bo-Min;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.942-945
    • /
    • 2010
  • The development of decentralized power has appeared as part of an effort to decrease the energy loss and the cost for electric power facilities through installing small renewable energy generation systems including solar and wind power generation. Recently a new era for decentralized power environment in building is coming in order to handle the climatic and environmental change occurred all over the world. Especially solar and wind power generation systems can be easily set up and are also economically feasible, and thus many industrial companies enter into this business. This paper suggests the overall architecture for the decentralized renewable power system and the prediction method of power on climatic change. The ultimate goal is to help manage the overall power efficiently and thus provide the technological basis for achieving zero-energy house.

  • PDF