• 제목/요약/키워드: 태양 객체특성

검색결과 2건 처리시간 0.019초

태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델 (DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics)

  • 가덕현;오승택;임재현
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.29-35
    • /
    • 2022
  • 자외선은 노출 정도에 따라 인체에 유익 또는 유해한 영향을 미치므로 개인별 적정 노출을 위해서는 정확한 자외선(UV) 정보가 필요하다. 국내의 경우 기상청에서 생활기상정보의 한 요소로 자외선 정보를 제공하고 있으나 지역별 자외선 지수(UVI, Ultraviolet Index)로 사용자 위치의 정확한 UVI를 제공하지는 못하고 있다. 일부에서는 정확한 UVI의 취득을 위해 직접 계측기를 운용하지만 비용이나 편의성에 문제가 있고, 태양의 복사량과 운량 등 주변 환경요소를 통해 자외선 양을 추정하는 연구도 소개되었으나 개인별 서비스 방법을 제시하지는 못하였다. 이에 본 논문에서는 각 개인별 위치에서의 정확한 UVI 제공을 위한 태양객체 정보와 태양광 특성을 이용한 UVI 산출 딥러닝 모델을 제안한다. 기 수집한 하늘이미지 및 태양광 특성을 분석하여 태양의 위치 및 크기, 조도 등 UVI와 상관도가 높은 요소들을 선정한 후 DNN 모델을 위한 데이터 셋을 구성한다. 이후 하늘이미지로부터 Mask R-CNN을 통해 추출한 태양객체 정보와 태양광 특성을 입력하여 UVI를 산출하는 DNN 모델을 구현한다. 국내 UVI 권고기준을 고려, UVI 8이상과 미만인 날에 대한 성능평가에서는 기준장비 대비 MAE 0.26의 범위 내 정확한 UVI의 산출이 가능하였다.

수중영상의 색상특성을 고려한 선박하부 영상의 윤곽선 강조 기법 (Edge Enhancement for Vessel Bottom Image Considering the Color Characteristics of Underwater Images)

  • 최현준;양원재;김부기
    • 해양환경안전학회지
    • /
    • 제23권7호
    • /
    • pp.926-932
    • /
    • 2017
  • 수심이 깊은 바다 속을 광학 카메라로 촬영하는 경우 영상 왜곡이 일어날 수 있다. 이런 문제는 해수와 각종 부유물로 인해 태양광이 충분히 전달되지 않아 발생하게 된다. 특히, 수심에 따라 녹색과 청색 계열의 색상이 지나치게 강조되는 색상의 왜곡과 해수에 의한 빛의 굴절과 부유물로 인한 경계선 부분에서의 왜곡현상이 발생한다. 이와 같은 왜곡들로 인하여 수중영상의 전반적인 화질이 저하된다. 본 논문에서는 정박 중인 선박의 하부를 촬영한 수중영상을 대상으로 영상분석을 수행한다. 그 결과를 기반으로 색상을 보정하고, 윤곽선을 강조하는 기법을 제안한다. 실험결과 제안한 기법을 적용할 경우 원본 수중영상의 유효 윤곽선 보다 3.39 % 정도 윤곽선의 수가 증가하는 결과를 얻을 수 있었다. 또한, 정량적인 평가와 함께 주관적인 화질평가를 병행한 결과 색상 보정과 함께 객체의 경계부분이 명확해지는 것을 확인할 수 있었다. 본 논문에서 제안한 수중영상의 색상 보정과 윤곽선 강조 기법은 향후 수중영상 촬영이 필요한 여러 분야에 응용될 수 있을 것으로 사료된다.