• Title/Summary/Keyword: 태양열 저장

Search Result 72, Processing Time 0.02 seconds

Transparent Near-infrared Absorbing Dyes and Applications (투명 근적외선 흡수 염료 및 응용 분야)

  • Hyocheol Jung;Ji-Eun Jeong;Sang-Ho Lee;Jin Chul Kim;Young Il Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.207-212
    • /
    • 2023
  • Near-infrared (NIR) absorbing dyes have been applied to various applications such as optical filters, biotechnology, energy storage and conversion, coating additive, and traditionally information-storage materials. Because image sensors used in cellphones and digital cameras have sensitivity in the NIR region, the NIR cut-off filter is essential to achieving more clear images. As energy storage and conversion have been important, diverse NIR absorbing materials have been developed to extend the absorption region to the NIR region, and NIR absorbing materials-based research has proceeded to improve device performances. Adding NIR-absorbing dye with a photo-thermal effect to a self-healable coating system has been attractive for future mobility technology, and more effective self-healing properties have been reported. In this report, the chemical structures of representative NIR-absorbing dyes and state of the art research based on NIR-absorbing dyes are introduced.

Manufacturing Multi-degradable Food Packaging Films and Their Degradibility (복합분해성 플라스틱 식품포장 필름의 제조 및 분해성)

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.877-883
    • /
    • 2003
  • Multi-degradable master hatch (M/B) was prepared and 0.05 mm polyethylene (PP) food packaging films containing 0, 10, and 20% M/B were manufactured by inflation film processing. The films were exposed to UV radiation, fungi, and heat in order to observe their photolysis, biodegradability, and thermal degradability, respectively. While pure PP film maintained more than 70% of its original elongation after 8 weeks of UV radiation, an almost perfect loss in the elongation of PP film containing 20% M/B was observed. Significant decreases in elongation of PP films by heat treatment $(68{\pm}2^{\circ}C)$ were also found in samples containing the multi-degradable M/B. By observing changes in film surface after the inoculation of fungi using scanning electron microscopy (SEM), the biodegradability of plastic film could be accelerated with the addition of multi-degradable M/B. The results of the mulching test in yard showed that adding multi-degradable M/B can effectively degrade plastic films in natural environmental conditions without interrupting the growth of plants.