• Title/Summary/Keyword: 태양열시스템 성능

Search Result 178, Processing Time 0.03 seconds

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

Energy Performance Evaluation of Low Energy Houses using Metering Data (실측데이터를 이용한 저에너지주택의 에너지성능평가)

  • Baek, Namchoon;Kim, Sungbum;Oh, Byungchil;Yoon, Jongho;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.369-374
    • /
    • 2015
  • This study analyzed analyzes the energy performance of six houses in Daejeon completed which were built in 2011. Observed The observed houses, which were all designed and constructed inof the same size and structure, are were highly insulated with triple Low-E coating windows; the insulation level of the walls is was $0.13W/m^2K$ and that of the roof is was $0.10W/m^2K$. As electric houses, all of the energy supplied to the houses, including for cooking, is was supplied by electricity. A and 3~4 kWp of photovoltaic system and a 3~5 kW of ground source heat pump (GSHP) were installed in each house tofor providing provide space heating/and cooling and hot water are installed. We constructed a Web-based remote monitoring system in order to understand energy consumption and the dynamic behavior of the energy system. T, and the results of our metering data analysis of 2013 are as follows. First, the annual residential energy consumption is was 4,400 kWh (${\sigma}=1,209$) and GSHP energy consumption is was 5,182 kWh (${\sigma}=1,164$). Second, residential energy consumption ranked highest in average energy usage, with at 45% of the total, followed by heating with at 30%, hot water supply with at 17% and cooling with at 6%. Third, the average energy independence rate is was 51.8%, the GFA (Gross gross floor area) criteria average energy consumption unit is was $48.7kWh/m^2yr$ (${\sigma}=10.1$), and the net energy consumption unit (except the energy yield of the PV systems) is was $24.7kWh/m^2yr$ (${\sigma}=8.8$).

Study on Indoor Thermal Performance Analysis upon PCM Temperature applicable to the Double Skin Facade System in the Winter (동절기 이중외피 시스템에 적용 가능한 PCM재료의 온도설정에 따른 실내 열 성능 분석에 관한 연구)

  • Ryu, Ri;Seo, Jang-hoo;Kim, Yong-seong
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.43-48
    • /
    • 2015
  • Purpose: Recently, many countries around the world are actively looking for the ways to make full use of natural energy sources and also develop and apply an environmentally friendly system designed to save building energy consumption. Under these circumstances, this study intended to determine the applicability and energy saving effect by deriving the indoor thermal performance characteristics and the PCM temperature appropriate for a double skin façade to reduce indoor energy consumption through the application of different PCM temperatures to double skin façade and perform a performance evaluation depending on the application or non-application of PCM to a double skin façade. Method: For this study, the physical variables of the double skin façade with PCM were configured through a preliminary examination based on an experimental measurement, and experimental measurements were taken with a total of 7 types of mockup cases: Type-1 (Basic), the basic double skin façade, Type-2 (PCM $18^{\circ}C$) which was applied to the inner skin of the double skin façade depending on the phase-change temperature of PCM, Type-3 (PCM $20^{\circ}C$), Type-4 (PCM $22^{\circ}C$), Type-5 (PCM $24^{\circ}C$), Type-6 (PCM $26^{\circ}C$), and Type-7 (PCM $28^{\circ}C$) with reference to the data analysis of the basic double skin façade which preceded this study, to analyze the indoor thermal performance of the double skin façade depending on PCM temperature and the installation or non-installation of a double skin façade applying PCM based on the selected unit space. Result: Indoor thermal performance was analyzed depending on the PCM temperature applicable to double skin façade, and the analysis of heating energy reduction showed that Type-2 (PCM $18^{\circ}C$) gained 15.9% more heat compared with Type-1 (Basic) and secondly, Type-3 (PCM $20^{\circ}C$) gained 11.5% more heat. Based on these findings, it is deemed possible that the use of energy for heating can be reduced when heat coming indoors increases during the heating period, and the appropriate temperature for PCM applied to the inner skin of a double skin façade to reduce heating energy in winter, Type-2 (PCM $18^{\circ}C$) showed the highest efficiency and Type-3 (PCM $20^{\circ}C$) was also deemed appropriate.

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

The International Code Trend of High Pressure Hydrogen Cylinder and Establishing Domestic Code for the Hydrogen Fuel Cell Vehicle (수소연료전지차량 고압수소용기의 국제기준 동향 및 국내기준 개발방향)

  • Kim, Chang Jong;Lee, Seung Hoon;Kim, Young Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.2-225.2
    • /
    • 2010
  • 전 세계는 온실 가스의 방출을 줄이기 위하여 기존의 화석연료를 대체할 수 있는 에너지를 찾기 위해 연구개발에 박차를 가하고 있다. 이러한 계속적인 연구에서, 전 세계의 국가들은 태양열, 풍력, 지열 및 수소에너지와 같이 화석연료를 대체할 다양한 가스를 조사해왔다. 대체에너지 중 수소 연료는 실제로 배출가스가 없기 때문에 가장 유망한 대안이라고 할 수 있다. 연료전지자동차용 연료로 수소를 사용하기 위해서는 저장합금, 액체 및 압축 상태로 저장할 수 있다. 이 중 세계 대부분의 자동차 메이커 들은 수소를 압축하는 방식을 채택하고 있으며, 주행거리를 확보하기 위하여 고압상태로 수소가스를 저장하는 방식을 사용한다. 수소연료전지 자동차용으로 고압의 수소를 저장할 수 있고, 자동차에 탑재할 수 있도록 가벼운 용기의 개발이 진행되고 있다. 이 중 Type3와 Type4 형태의 용기가 시범적으로 적용되고 있으며, 이러한 용기의 안전성을 확보하기 위한 기준들이 국 내외에서 개발되고 있다. 현재 국제기준 중 UN ECE의 WG.29에서 선진국들을 중심으로 수소연료전지 자동차용 용기의 안전성 평가를 위한 기준을 개발하고 있다. 본 연구에서는 ISO. 15869의 기술기준에 대한 안전성 분석과 미국의 SAE J2579의 기술 보고서에서 제시한 새로운 개념의 안전성 평가 기법을 기준으로 제정되고 있는 UN ECE WG.29의 draft초안을 비교하고, 향후 수소연료전지 자동차용 용기를 위한 국내기준의 방향을 제시하고자 한다.

  • PDF

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

An Analytical Study on the Performance Analysis of a Desalination System by Condensing Method (응축방식을 이용한 담수화 시스템의 성능예측을 위한 분석연구)

  • Kim, Chul-Ho;Kim, Won-Il;Choi, Jea-Young;Kim, Jae-Choul;Kim, Min-Sun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • A new concept of an Eco-friendly desalination method is introduced in this study. The main idea of the desalination method of seawater is the condensation of the vaporized seawater by solar heat energy on the surface of seashore. The wind turbine blade plays a role of heat exchanger condensing the vaporized water in the air. In this analytical study, the availability of the proposed desalination system was studied. First, an analytical condensation theory of the vaporized water in air was arranged and the parametric study was conducted to estimate the amount of freshwater produced from the system with the change of the temperature difference between the humid air and turbine blade, and the relative humidity in air, and wind speed. From the analytical calculation, 2,927(ton/year) of freshwater was produced at the vertical-type wind turbine (Diameter=4m, Height=3m) as the relative humidity is 100%, the temperature difference between the impeller blade and the humid air is $40^{\circ}C$ and the wind speed is 10m/s.

Transparent Near-infrared Absorbing Dyes and Applications (투명 근적외선 흡수 염료 및 응용 분야)

  • Hyocheol Jung;Ji-Eun Jeong;Sang-Ho Lee;Jin Chul Kim;Young Il Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.207-212
    • /
    • 2023
  • Near-infrared (NIR) absorbing dyes have been applied to various applications such as optical filters, biotechnology, energy storage and conversion, coating additive, and traditionally information-storage materials. Because image sensors used in cellphones and digital cameras have sensitivity in the NIR region, the NIR cut-off filter is essential to achieving more clear images. As energy storage and conversion have been important, diverse NIR absorbing materials have been developed to extend the absorption region to the NIR region, and NIR absorbing materials-based research has proceeded to improve device performances. Adding NIR-absorbing dye with a photo-thermal effect to a self-healable coating system has been attractive for future mobility technology, and more effective self-healing properties have been reported. In this report, the chemical structures of representative NIR-absorbing dyes and state of the art research based on NIR-absorbing dyes are introduced.