• Title/Summary/Keyword: 태양광단지

Search Result 55, Processing Time 0.019 seconds

Reduction of the Nitrogen in the Secondary Effluent by the Hybrid Sequential Aerobic-Anoxic Natural System (자연현상을 이용한 질산화-탈질공정에 의한 하수처리장 유출수의 질소제거)

  • Kim, Young-Chul;Chung, Paul-Gene;An, Ik-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • In this paper, performance of a hybrid sequential aerobic-anaerobic natural system was investigated. Continuous aerobic and anoxic conditions were created by alternatively placing waste stabilization pond (WSP) and wale. hyacinth pond (WHP). Two pilot-scale treatment lines were built and operated; The first consists of WSP integrated with WHP and the second of WSP connected with Dark Pond(DP), namely control system ponds which were used to examine the effects of water hyacinth on nitrification and de-nitrification. The overall performance in nitrogen was 86% reduction in WSP-WHP and 36% in WSP-control pond system. Nitrogen was mostly removed by nitrification and de-nitrification which simultaneously occurred in the same water hyacinth ponds. For the de-nitrification, benthic layer was found out to be adequate support as a carbon source. In addition, WSP-WHP system was very effective in reducing phosphorus. Overall P removal efficiency in WSP-WHP is 81%, while it is only 16% in WSP-control. difference in phosphorus reduction between those two systems is thought to be caused by the plants and probably their roots producing extra-cellular materials, but these aspects need to be further studied.

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

Development of the Interconnection Evaluation System for Dispersed Generations in Distribution Systems (분산전원의 배전계통 연계 평가 시스템의 개발에 관한 연구)

  • Kang Min-Kwan;Park Jae-Ho;Oh Yong-Taek;Hong Sang-Eun;Rho Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.12-20
    • /
    • 2006
  • Recently, new dispersed sources (DSG) such as Photovoltaic, Wind Power, fuel cell etc. are interconnected with distribution systems as national projects for alternative energy preparing for oil crisis. This paper deals with the optimal evaluation algorithms in the case where new dispersed sources are operated in distribution systems. It is very difficult and complicated to handle the interconnection issues for proper voltage managements, because professional skills and enormous amounts of data for the evaluations are required. The typical evaluation algorithms mainly depending on individual ability and quality of data acquired, inevitably cause the different results f3r the same issue, so unfair and subjective evaluations are unavoidable. In order to overcome these problems, this paper proposes reasonable and general algorithms based on the standard model system and proper criterion, which offers the fair and objective evaluations in any case.

  • PDF

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

Frequency Stability Enhancement of Power System using BESS (BESS를 활용한 전력계통 주파수 안정도 향상)

  • Yoo, Seong-Soo;Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.595-606
    • /
    • 2022
  • Korea has the characteristics of traditional power system such as large-scale power generation and large-scale power transmission systems, including 20 GW large-scale power generation complexes in several regions with unit generator capacity exceeding 1.4 GW, 2-3 ultra-high-voltage transmission lines that transport power from large-scale power generation complexes, and 6 ultra-high-voltage transmission lines that transport power from non-metropolitan areas to the metropolitan area. Due to the characteristics of the power system, the penetration level for renewable energy is low, but due to frequency stability issue, some generators are reducing the output of generators. In the future, the issue of maintaining the stability of the power system is expected to emerge as the most important issue in accordance with the policy of expanding renewable energy. When non-inertial inverter-based renewable energy, such as solar and wind power, surges rapidly, the means to improve the power system stability in an independent system is to install a natural inertial resource synchronous condenser (SC) and a virtual inertial resource BESS in the system. In this study, we analyzed the effect of renewable energy on power system stability and the BESS effect to maintain the minimum frequency through a power system simulation. It was confirmed that the BESS effect according to the power generation constraint capacity reached a maximum of 122.81 %.