• Title/Summary/Keyword: 태블로 알고리즘

Search Result 4, Processing Time 0.015 seconds

Methods to Reduce Execution Time of Ontology Reasoners based on Tableaux Algorithm (태블로 알고리즘 기반 온톨로지 추론 엔진의 속도 향상을 위한 방법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • As size of ontology has been increased more and more, the descriptions in the ontologies become more complicated, Therefore finding and modifying unsatisfiable concepts is hard work in ontology construction process, Minerva is an ontology reasoner which detects unsatisfiable concepts automatically and infers subsumption relation between concepts in ontology, Most description logic based ontology reasoners (including Minerva) work using tableaux algorithm, Because tableaux algorithm is very costly, ontology reasoners need various optimization methods, In this paper, we propose optimizing methods to reduce execution time of tableaux algorithm based ontology reasoner. Proposed methods were applied to Minerva which was developed as preceding study result. In consequence the new version Minerva shows high performance.

Medusa: An Extended DL-Reasoner for SWRL-enabled Ontologies (Medusa: 시맨틱 웹 규칙 언어 처리를 위한 확장형 서술 논리 추론기)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.5
    • /
    • pp.411-419
    • /
    • 2009
  • In order to derive hidden Information (concept subsumption, concept satisfiability and realization) of OWL ontologies, a number of OWL reasoners have been introduced. Most of the reasoners were implemented to be based on tableau algorithm. However this approach has certain limitation. This paper presents architecture for Medusa. The Medusa is an extended DL-reasoner for SWRL(Semantic Web Rule Language) reasoning under well-founded semantics with ontologies specified in Description Logic. Description logic based ontology reasoners theoretically explore knowledge representation and its reasoning in concept languages. However these logics are not equipped with rule-based reasoning mechanisms for assertional knowledge base; specifically, rule and facts in logic programming, or interaction of rules and facts with terminology. In order to deal with the enriched reasoning, The Medusa provides combining DL-knowledge base and rule based reasoner. The described prototype uses $Prot{\acute{e}}g{\acute{e}}$ API[1] for controlling communication with the ontology reasoner.

Solving Non-deterministic Problem of Ontology Reasoning and Identifying Causes of Inconsistent Ontology using Negated Assumption-based Truth Maintenance System (NATMS를 이용한 온톨로지 추론의 non-deterministic 문제 해결 및 일관성 오류 탐지 기법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.5
    • /
    • pp.401-410
    • /
    • 2009
  • In order to derive hidden information (concept subsumption, concept satisfiability and realization) of OWL ontology, a number of OWL reasoners have been introduced. The most of these ontology reasoners were implemented using the tableau algorithm. However most reasoners simply report this information without providing a justification for any arbitrary entailment and unsatisfiable concept derived from OWL ontologies. The purpose of this paper is to investigate an optimized method for non-deterministic rule of the tableau algorithm and finding axioms to cause inconsistency in ontology. In this paper, therefore, we propose an optimized method for non-deterministic rule and finding axiom to cause inconsistency using NATMS. In the first place, we introduce Dependency Directed Backtracking to deal non-deterministic rule, a tableau-based decision procedure to find unsatisfiable axiom Furthermore we propose an improved method adapting NATMS.

Integration of Ontology Open-World and Rule Closed-World Reasoning (온톨로지 Open World 추론과 규칙 Closed World 추론의 통합)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.282-296
    • /
    • 2010
  • OWL is an ontology language for the Semantic Web, and suited to modelling the knowledge of a specific domain in the real-world. Ontology also can infer new implicit knowledge from the explicit knowledge. However, the modeled knowledge cannot be complete as the whole of the common-sense of the human cannot be represented totally. Ontology do not concern handling nonmonotonic reasoning to detect incomplete modeling such as the integrity constraints and exceptions. A default rule can handle the exception about a specific class in ontology. Integrity constraint can be clear that restrictions on class define which and how many relationships the instances of that class must hold. In this paper, we propose a practical reasoning system for open and closed-world reasoning that supports a novel hybrid integration of ontology based on open world assumption (OWA) and non-monotonic rule based on closed-world assumption (CWA). The system utilizes a method to solve the problem which occurs when dealing with the incomplete knowledge under the OWA. The method uses the answer set programming (ASP) to find a solution. ASP is a logic-program, which can be seen as the computational embodiment of non-monotonic reasoning, and enables a query based on CWA to knowledge base (KB) of description logic. Our system not only finds practical cases from examples by the Protege, which require non-monotonic reasoning, but also estimates novel reasoning results for the cases based on KB which realizes a transparent integration of rules and ontologies supported by some well-known projects.