• Title/Summary/Keyword: 태백층군

Search Result 31, Processing Time 0.025 seconds

Reassessment of the Pyeongan Supergroup: Metamorphism and Deformation of the Songrim Orogeny (평안누층군의 재조명: 송림 조산운동의 변성작용과 변형작용)

  • Kim, Hyeong Soo
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.367-379
    • /
    • 2019
  • Pyeongan Supergroup (PS) in the Taebaeksan basin preserves key geological evidences to understand the tectonometamorphic evolution of the Songrim orogeny that affected the formation of the Korean Peninsula during the late Paleozoic to early Mesozoic. The aims of this paper therefore are to investigate the characteristics of the Songrim orogeny based on the previous results of metamorphism and deformations of the PS, and then to review geological significance and research necessity of the PS. Age distributions and Th/U ratio of detrital zircon in the PS indicate that sedimentary environment of the Taebaeksan basin during the late Paleozoic was arc-related foreland basin and retro-arc foreland basin at the active continental margin. In addition, the main magmatic activities occurred in the early Pennsylvanian and Middle Permian, thus sedimentation and magmatic activities occurred simultaneously. The PS was affected by lower temperature-medium pressure (M1) and medium temperature and pressure (M2) regional metamorphism during the Songrim orogeny. During M1, slate and phyllite containing chloritoid, andalusite, kyanite porphyroblasts intensively deformed by E-W bulk crustal shortening combined with folding and shearing. And garnet and staurolite porphyroblasts were formed during the N-S bulk crustal shortening accompained by M2. Such regional metamorphism of the PS is interpreted to occur in an area where high strain zone is localized during ca. 220-270 Ma. In order to elucidate the evolution of the Taebaeksan basin and tectonic features of the Songrim orogeny, it is expected that the study will be carried out such as the regional distribution of metamorphic zones developed in the PS, characteristics and timing of deformations, and late Paleozoic paleo-geography of the Taebaeksan basin.

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

천곡동굴 부근의 지질개관

  • 정창희
    • Proceedings of the Speleological Society Conference
    • /
    • 1993.07a
    • /
    • pp.76-88
    • /
    • 1993
  • 1962년 대한지질학회에서 조사 발표한 태백산지구지질단 제4쪽과 제8쪽에 의하면 동해시 부근의 지질은 [그림 1]과 같다. 이 지질도 남반부에 천곡동 동굴지대가 포함되어 있는데 동해시 일대의 지질은 조선계층군의 중부와 평안계층군의 대부분, 이들에 관입한 편마상화강암과 우질화강암을 주로하고 이들을 부정합으로 덮은 홍적층(단구층), 중적층으로 이루어져 있다.(중략)

  • PDF

천곡동굴 부근의 지질개관

  • 정창희
    • Journal of the Speleological Society of Korea
    • /
    • v.27 no.28
    • /
    • pp.53-67
    • /
    • 1991
  • 1962년 대한지질학회에서 조사 발표한 태백산지구지질권 제4쪽과 제8쪽에 의하면 동해시 부근의 지질은 [그림 1]과 같다. 이 지질도 남반부에 천곡동 동굴지대가 포함되어 있는데 동해시 일대의 지질은 조선계층군의 중부와 평안계층군의 대부분, 이들에 관입한 편마상화동굴과 우질화강암을 주로 하고 이들을 부정합으로 덮은 홍적층, 중적층으로 이루어져 있다.(중략)

  • PDF

태백산지역에서는 고도별 Karst Terrain의 비교 연구

  • 윤영숙
    • Journal of the Speleological Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.31-39
    • /
    • 1980
  • 우리나라에는 캠브로-오오도비스(Cambro-Ordovician)기에 속하는 조선누층군의 대석회암통이 넓게 분포되어 있어 석회암지대 특유의 Karst지형을 이루는 곳이 많다. 본 논문의 연구대상지역은 고생대 캠브로-오오도비스기의 조선계 대석회암통에 속하는 옥천지향사의 북부태백산지구를 중심으로 한 석회암 분포지역 중에서 Sinkhole terrain이 비교적 잘 발달되고 해발고도가 상이한 3개 지역을 선정하였다.(중략)

  • PDF

Deposional Age of the Bangnim Group, Pyeongchang, Korea Constrained by SHRIMP U-Pb Age of the Detrital Zircons (쇄설성 저어콘의 SHRIMP U-Pb 연령으로 한정한 평창지역 방림층군의 퇴적시기)

  • Gwak, Mu-Seong;Song, Yong-Sun;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • We determined SHRIMP U-Pb ages of the detrital zircons separated from the Bangnim Group of the Pyeongchang area to constrain its depositional age. As the result, the minimum age group yielded $^{206}Pb/^{238}U$ age of $450.3{\pm}4.2Ma$ (n=3), suggesting depositional age younger than Late Ordovician. Therefore, the Bangnim Group cannot be a Precambrian sedimentary formation but is younger than Myobong Formation of the Early Paleozoic Joseon Supergroup of the Taebaeksan basin. Such a depositional age implies that the Bangnim Group and structurally overlying Jangsan Quartzite should be in fault contact, suggesting that the Jangsan Quartzite, Myobong Formation and Pungchon Limestone thrusted over the Bangnim Group. The zircon U-Pb age distribution pattern of the Bangnim Group resembles those of the Early Paleozoic Myobong and Sambangsan Formations of the Taebaeksan basin and seemingly Middle Paleozoic Daehyangsan Quartzite and the Taean Formation. However, detrital zircon U-Pb age patterns of the Late Paleozoic Pyeongan Supergroup are quite distinct from them, suggesting drastic change in provenance of the detrital zircon supply. Therefore, we suggest that the Bangnim Group was deposited before the Pyeongan Supergroup.

Scientific Significances of the Seongryu Cave (Natural Monument No. 155) (성류굴(천연기념물 제155호)의 과학적 중요성)

  • Kim, Lyoun(Ryeon);Woo, Kyung Sik;Kim, Bong Hyeon;Park, Jae Suk;Park, Hun Young;Jeong, Hae Jeong;Lee, Jong Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.236-259
    • /
    • 2010
  • The examination of sediment distribution in Seongryu Cave shows existence of rocks contrasting with Joseon Supergroup contrary to existing knowledge. Contrasting especially with the Taeback Group, Daegi Formation, Hwajeol Formation, and Dongjeom Formation has been observed. Unlike Taeback area where Dumugol Formation and Makgol Formation are observed on top of Dongjeom Formation, the rocks of this area are not clear in its separation between the two, so that it was named Geunnam Formation. Seongryu Cave has been developed in this Ordovician Geunnam Formation of the Joseon Supergroup. The cave, mostly horizontal, runs in the NE-SW direction, and contains three lakes. The main passage and branches are about 330 m and 540 m, respectively, making the total length of the cave about 870 m (show cave area = 270 m). Through underwater examination, about 85 m-long underwater passage was newly discovered. Various speleothem such as soda straw, stalactite, stalagmite, column, flowstone, rimston, cave shield, cave coral, curtain, bacon sheet, cave pearl, cave flower, helictite and calcite raft can be found in the cave. There are sections with constant flow of cavern water, but the majority of cavern water in the cave come from the ceiling. The most important discovery in this study is the presence of various speleothem in the submerged part of cave passages. Traces of corrosion and/or erosion can be observed in the speleothem in the submerge passage.

Characteristics of Fracture Systems in Southern Korea (우리나라 단열구조의 특성)

  • 김천수;배대석;장태우
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.207-225
    • /
    • 2003
  • According to the data analysis of the regional fracture systems in southern Korea, the fracture orientations show three dominant sets : NNE, NW and WNW. A NNE set is the most abundant and includes most of the largest fractures. The highest fracture density is shown in the Taebaegsan mineralized area corresponding to Ogchon nonmetamorphic belt and the lowest one in the southwestern area of southern Korea. In addition, the density is higher in nonmetamorphic sedimentary rocks such as Choseon Supergroup. Pyeongan Supergroup, Daedong Supergroup and Kyeongsang Supergroup than in Precambrian basements and Jurassic granites. The regional fractures in southern Korea can be classified into four orders designated $F_1,{\;}F_2,{\;}F_3{\;}and{\;}F_4${\;}and{\;}F_4$ on the basis of their trace length. It is quite significant that fractures of each order are self-similar with respect to orientation and the combined fracture length distribution indicates a power-law distribution with an exponent of -2.04. As fractures were analyzed based on the tectonic provinces, Gyeonggj Massif and Kyeongsang Basin have all orders of fractures from $F_1$ to $F_4$. Most of the large scale faults may be ascribed to the products of slip accumulation through multiple deformation. Others besides $F_1$ fractures are thought to be evenly distributed through the whole area of southern Korea.

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.

New Occurrence of Haengmae Formation in Taebaeksan Basin (태백산분지 내 새로운 행매층 분포 확인)

  • Song, Yungoo;Park, Chaewon;Kim, Namsoo;Choi, Sung-Ja;Chwae, Ueechan;Kwon, Sanghoon;Jang, Yirang
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.365-372
    • /
    • 2021
  • Pebble-bearing clastic carbonate rock which has been found in and around the Jeongseon and Okgye through the field survey was studied in petrological and mineralogical characteristics. We define the clastic carbonate rocks as 'Dolomite-pebble bearing fine sand-sized dolostone, or grainstone', which are characterized by the existence of dolomite single grains and Mg-phengite, and by the subsequent formation of secondary calcite cements. These attributes correspond well with those of the typical Haengmae Formation from Haengmae-dong, Mitan-myeon, Jeongseon-gun, thus the carbonate rocks in the Jeongseon and Okgye areas must belong to the Haengmae Formation. The result suggests that the Haengmae Formation is an independent unit among the Paleozoic lithostratigraphic units in Taebaek basin and lies in the upper part of Jeongseon and Sukbyungsan Formations under the Hongjeom Formation of Pyeongan Supergroup.