기존의 태그 기반 시스템들은 콘텐츠에 태깅된 태그들을 활용한 단일 태그 매칭을 통해 검색결과를 제공함에 따라 정확도가 낮은 검색결과를 제공하고 있으며, 또한 사용자들이 콘텐츠에 태깅 시 태그간의 연관관계 및 우선순위는 고려하지 않아 태그가 가지고 있는 콘텐츠와 관련된 정보들을 효율적으로 제공하지 못하고 있다. 이에 본 논문에서는 위의 문제점을 해결하기 위해 태그 기반 시스템에 적합한 태그간 의미 유사도를 추출하여 콘텐츠에 태깅된 태그들을 재 랭킹하기 위한 태그 랭킹 시스템을 제안하였다. 제안 시스템의 성능 평가는 이미지에 태깅된 태그(baseline)와 태그 동시출현 빈도수 기법을 적용한 랭킹(frequency) 결과를 본 논문에서 제안한 태그 랭킹 시스템에 의해 추출된 랭킹 결과와 비교 실험하였다.
현재 웹 기술은 HTML에서 정보를 표현하는 외형과 내용을 분리하여 정보를 구조화할 수 있는 XML을 사용하고 있다. 구조적으로 구성된 XML은 새로운 정보 검색의 방법을 제시하였다. 즉, 태그를 이용한 정보검색으로 검색어에 의미를 부여함으로써 정보 검색자에게 좀더 효율적인 검색을 가능하게 하였다. 그러나 이러한 구조화 문서 검색 기법은 정확한 태그를 입력하였을 경우에만 결과를 얻을수 있는 단점을 지니고 있다. 따라서 본 논문에서는 XML문서의 태그 검색에 있어 정확한 태그 검색을 확장한 유사 태그 검색기법을 설계하고 구현하였다. 유사한 태그를 검색하기 위하여 시소러스를 구성하였으며, 작성된 시소러스를 이용하여 유사한 태그에 대한 검색을 수행하였다. 기존의 XML문서 검색 시스템은 정한 태그에 대한 검색만을 수행할 수 있는 반면, 본 시스템은 태그검색에 있어 시소러스를 활용함으로써 질의에 입력되어진 태그와 유사한 태그에 대한 검색 결과를 보여줌으로써 사용자에게 질의어 선정의 불편함을 감소시켰다.
최근 SNS 사용자가 급증하면서 매우 다양하고 방대한 양의 글이 여러 종류의 SNS를 통해 생성되고 있다. 그중 트위터는 정보의 전달 및 확산에 상당히 유용한 도구로 사용되고 있다. 이러한 트위터의 사용자 트윗은 뉴스, 음악, 사진, 여행 등 다양한 형태로 등장한다. 또한 트위터는 해시태그라는 사용자 정의 태그를 사용하는데 이는 트윗의 키워드 및 핵심을 쉽게 표현할 수 있도록 해주는 효과적인 수단이다. 최근 상당히 많은 양의 트윗의 생성에도 불구하고 이를 다양한 카테고리별로 분류할 수 있는 연구가 많이 진행되지 않았다. 따라서 본 논문에서는 해시태그를 이용해 트윗의 핵심을 파악하고 수많은 트윗을 다양한 토픽별로 분류할 수 있는 기법을 제안한다. 우선 다양한 카테고리의 인기 해시태그가 포함된 트윗을 수집하고 수집한 트윗에서 해시태그별 키워드를 추출한다. 그리고 코사인 유사도를 통해 해시태그별 내용 유사도를 파악하여 각 카테고리 내의 해시태그가 얼마나 유사한 내용을 지니고 있는지 파악한다. 마지막으로 사용자 트윗이 입력되면 모든 카테고리와 유사도를 비교하여 가장 유사도가 높은 카테고리를 찾아 추천해준다. 제안된 기법을 바탕으로 프로토타입을 구현하고 실험을 통해 성능을 평가한다.
개인이 사용할 수 있는 스마트 기기가 다양해지면서 여러 기기로 생산된 사진 콘텐츠가 어떤 기준이나 규칙 없이 분산되어 있어 콘텐츠를 관리하고 원하는 콘텐츠를 검색하는 것이 어려워졌다. 따라서 본 논문에서는 개인 사진 콘텐츠를 효과적으로 분류하기 위하여 의미적 유사도를 기반으로 한 태그 클러스터링 기법을 제안한다. 태그들 사이의 유사도를 계산하여 서로 관련이 있다고 판단되는 태그들을 클러스터링 하는데, 태그가 같은 클러스터에 포함되어 있으면 그 태그를 가진 사진들도 유사성을 가진다고 볼 수 있으므로 개인 사진들을 의미에 따라 분류하는데 이용할 수 있다.
해시태그는 현재 페이스북, 트위터와 같은 SNS와 개인 블로그 등에서 활발하게 사용되고 있다. 하지만 스팸성 목적 또는 게시글 조회수 증가 등의 목적으로 무분별하게 해시태그를 사용하여 태그검색의 효율성이 떨어지고 있다. 이에 따라 본 논문에서는 태그검색의 정확도를 높이고자 기존의 키워드 추출 알고리즘과 단어간 유사도 평가 알고리즘을 이용한 태그 검색 시스템을 제안하였다. 제안하는 시스템의 테스트 결과 태그 검색의 정확도가 향상됨을 알 수 있었다.
트위터 해시태그(#, HashTag)는 트윗(Tweets)에서 특정 키워드나 내용을 주제별로 분류하고 검색을 보다 효율적으로 사용하기 위한 사용자 정의 태그이다. 사용자가 정의하기에 따라 다양한 형태로 작성되기 때문에 오히려 검색의 효율성이 떨어질 수 있으며, 사용자는 자신이 작성한 트윗에 어떤 해시태그를 추가해야 하는지에 대한 궁금증이 생기는 경우가 발생한다. 본 논문에서는 이러한 문제를 해결하기 위해 사용자가 작성한 트윗에 적합한 해시태그를 추천하는 기법을 제안한다. 수집한 트윗과 해시태그의 키워드를 추출하고 트윗의 유사도를 계산하기 위해 TF-IDF와 Cosine Similarity를 적용하여 유사한 트윗을 갖는 해시태그를 추천한다. 본 논문에서 제안된 기법을 검증하기 위한 실험으로 추천의 정확성을 평가했다.
웹의 성장에 따른 기하급수적인 정보의 축적으로 인한 정보과다(Information Overload) 현상의 심화를 해결하기 위해 이루어져 온 많은 연구 중 하나인 추천 시스템은 사용자에게 고수준의 편의성을 제공하기 위한 시스템으로써 발전해 왔다. 그러나 과거에 고도로 집중화되어 관리, 구축되어 오던 정보와는 달리 Web2.0라는 새로운 웹 환경의 도래와 함께 태그, 블로그 등 새로운 형태와 특성을 가지는 점보들이 등장하게 되었다. 웹의 컨텐츠에 대한 메타정보를 사용자가 직접 입력한 Web2.0 기반의 태그 데이터론 활용해서 추천 시스템의 성능을 향상시킬 수 있는 기법을 연구하였다. 추천 기법 중 가장 대표적이고 기초적인 협업 필터링 기법에 태그를 활용하며 태그에 사용자에 대한 중요도를 감안한 가중치 부여 기법에 연구한다. 유사한 성향을 가진 사용자를 식별하는데 있어 태그 집합간의 유사도를 비교하는 방법을 사용하며 사용자의 성향을 반영하기 위해서 태그와 사용자의 선호도 정수와의 연관성을 분석해서 이를 태그의 가중치로 환산하는 기법을 제안한다.
개인이 사용할 수 있는 스마트 기기가 다양해지면서 여러 기기로 생산된 사진 콘텐츠가 어떤 기준이나 규칙 없이 분산되어 있어 콘텐츠를 관리하고 원하는 콘텐츠를 검색하는 것이 어려워졌다. 따라서 본 논문에서는 개인 사진 콘텐츠를 효과적으로 분류하기 위하여 의미적 유사도를 기반으로 한 태그 클러스터링 기법과 개인이 사진에 태그를 넣을 때 초기 클러스터를 기반으로 태그를 추천하는 방법을 제안한다. 태그들 사이의 유사도를 계산하여 서로 관련이 있다고 판단되는 태그들을 클러스터링 하는데, 태그가 같은 클러스터에 포함되어 있으면 그 태그를 가진 사진들도 유사성을 가진다고 볼 수 있으므로 개인 사진들을 의미에 따라 분류하는데 이용할 수 있다. 또한 분류된 초기 클러스터로 태그를 추천하여 개인 사용자가 태그를 분류에 맞게 추가할 수 있어 사진 분류 관리가 용이해진다.
XML(eXtensible Markup language) 사용의 급속한 증가는 웹에 존재하는 많은 양의 정보들을 XML기반 데이터로 생성하게 했으며 저장과 교환에 있어서 표준이 되도록 했다. 이는 사용자에 의한 임의의 태그정의를 가능하게 하는 XML 사용의 용이성에 기반한다. 그러나 이러한 장점은 비슷한 내용을 갖는 XML 문서에 대해서 사람들마다 개개의 태그이름과 구조를 사용한다는 문제점을 만든다. 따라서 유사한 의미를 가지고 있지만 서로 다른 문서로 분류된다. 이러한 점을 개선하기 위해 XML 문서 태그들 간의 벡터 스페이스 모델과 XML 데이터를 이용하여 시소러스를 구축하는 방법 등이 연구되고 제안되어 왔지만 아직 초보적인 단계이다. 본 논문에서는 XML 문서를 구성하는 태그들을 동의어로 확장하여 벡터를 생성하고 생성된 벡터를 가지고 태그들 간의 유사성을 체크하여 서로 다른 XML 문서들의 유사성을 수치적으로 계산한다.
소셜 북마킹(social bookmarking)은 현재 웹에서 가장 활발한 트렌드 중의 하나이다. 소셜 북마크 시스템을 통해 사용자들은 원하는 웹 페이지에 그의 주제 또는 내용을 나타내는 태그(tag)들을 부착할 수 있다. 지금까지의 연구들은 주로 이러한 정보를 웹 검색을 향상시키는 데 사용해왔다. 본 논문에서는 웹 페이지에 부착된 태그들을 사용하여 두 웹 페이지 간의 의미적 유사도를 측정하는 방법을 제안한다.웹 페이지는 다양한 종류의 멀티미디어 데이터로 구성되어 있기 때문에, 웹 페이지 내부에 포함된 데이터를 사용하여 웹 페이지 간의 유사도를 측정하는 것은 매우 어려운 일이다. 하지만 사용자들에 의해 웹 페이지에 부착된 태그들을 사용하면 웹 페이지 간의 유사도는 매우 효과적으로 측정될 수 있다. 본 논문에서는 WSET (Web Page Similarity Based on Entire Tags)라 하는, 태그에 기반하여 웹 페이지 간의 유사도를 측정하는 새로운 방법을 제안한다. 실험 결과는 제안하는 방법이 기존 방법에 비해 더 좋은 결과를 나타냄을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.