• Title/Summary/Keyword: 태국산

Search Result 57, Processing Time 0.026 seconds

Monitoring on Radioactivity in Foodstuffs (식품에 대한 방사능 오염실태 조사)

  • Kwon, Ki-Sung;Hong, Jin-Hwan;Han, Sang-Bae;Lee, Eun-Ju;Kang, Kil-Jin;Chung, Hyung-Wook;Park, Seong-Gyu;Jang, Gui-Hyun;An, Ji-Seung;Kim, Dong-Sul;Kim, Myung-Chul;Kim, Chang-Min;Chung, Kun-Ho;Lee, Chang-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.183-187
    • /
    • 2004
  • Radioactivity in foodstuffs was surveyed for reference in amending regulation on the maximum permitted levels of radioactive contamination of foodstuffs. Most domestic and imported (?) foodstuffs were sampled, some domestic items collected around nuclear power plants to compare site-specific contamination. The collected samples were dried and ashed. Radioactivity in foodstuffs was measured using HPGe gamma spectrometer, Cs-137 activity ranged from 0.025-0.053, 0.045-0.500, 0.062-0.105, 0.025-1.151, 0.021-0.145 and 0.046-0.155 Bq/kg-fresh in cereals, pulses, mot vegetables (potato), ginsengs, meat, and marine products, respectively, with imported dried ginseng showing the highest radioactivity, Results reveal radioactivity in foodstuffs collected in 2002 is far below the maximum permitted levels of 370 Bq/kg. No significant differences were observed in radioactivity among sampling sites and between domestic and imported foodstuffs.

Experimental Studies on the Optimum Pasteurization Condition of the Cow's Milk Produced in Korea IV. The Changes in Chemical Composition and Microbiological Aspects of Ultra-High Temperature Sterilized Milk (한국산(韓國産) 우유(牛乳)의 적정(適正) 살균조건(殺菌條件)에 관(關)한 실험적(實驗的) 연구(硏究) IV. 초고온처리(超高溫處理)에 의한 우유(牛乳)의 화학적(化學的) 조성(組成) 및 미생물학적(微生物學的) 성상(性狀)의 변화(變化))

  • Kim, Jong Woo;Nahm, Myung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.318-328
    • /
    • 1987
  • The results of experiment to review the optimum pasteurization condition for the raw milk produced in Korea by using UHT procedure of $100-145^{\circ}C$, the changes in chemical composition, microbiological aspects and the keeping quality of the heat treated milk are summarized as follows: 1. In UHT milk sterilized at $100-145^{\circ}C$, the pH value decreased from 6.55 to 6.33 but protein, fat, lactose and ash did not show significance changes while casein nitrogen and non-protein nitrogen increased but non-casein nitrogen and filterable nitrogen decreased. 2. Calcium content decreased gradually from 119.8 mg/100 g of raw milk to 75.75 mg/100 g at $145^{\circ}C$ as the heat treatment increased and vitamin C decreased rapidly from 1.37 mg/100 ml to 0.82 mg/ 100 ml while artificial digestibility increased from 14.07% of raw milk to 26.0% as the heat treatment increased. 3. As the heat treatment increased, microorganism counts decreased to $0.5{\times}10^2/ml$ and were not found above $135^{\circ}C$ - coliforms and psychrotrophic bacteria from $100^{\circ}C$ thermoduric bacteria, thermophiles, mould and yeast from $125-130^{\circ}C$. Heat treatment above $135^{\circ}C$ showed 100% sterilization effect. 4. The result of preservation test for heat treated milk did not show any significant changes in titratable acidity and general composition at $4^{\circ}C$, $25^{\circ}C$ and $37^{\circ}C$ up to 15 days. Viable bacteria counts, coliforms and psychrotrophic bacteria were not found but loss of vitamin and increase in viable bacteria counts appeared after 20 days.

  • PDF

Experimental Studies on the Optimum Pasteurization Condition of the Cow's Milk Produced in Korea III. The Changes in Chemical Composition and Microbiological Aspects of High Temperature Pasteurized Milk (한국산(韓國産) 우유(牛乳)의 적정(適正) 살균조건(殺菌條件)에 관(關)한 실험적(實驗的) 연구(硏究) III. 고온살균처리(高溫殺菌處理)에 의한 우유(牛乳)의 화학적(化學的) 조성(組成) 및 미생물학적(微生物學的) 성상(性狀)의 변화(變化))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.309-317
    • /
    • 1987
  • The raw milk produced in Korea was heated at $70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, $85^{\circ}C$, $90^{\circ}C$, $95^{\circ}C$ and $100^{\circ}C/15sec.$. The changes in chemical composition and microbiological aspects of the milk were summarized as following results: 1. In high temperature pasteurized milks as the heat treatment increased, pH value decreased but protein, fat, lactose and ash did not show significant changes in their contents while casein nitrogen and non-protein nitrogen increased but non-casein nitrogen and filterable nitrogen decreased in their contents. 2. Calcium content of raw milk decreased from 119.79mg/100g to 111.86mg/100g at $75^{\circ}C$ and to 106.24mg/100g at $100^{\circ}C$. Vitamin C decreased from $1.37mg/100m{\ell}$ of raw milk to $1.15mg/100m{\ell}$ at $75^{\circ}C$ and $0.94mg/100m{\ell}$ at $100^{\circ}C$. Artificial digestibility increased as the heat treatment got higher. 3. Viable bacteria counts decreased from $9.0{\times}10^3/m{\ell}$ at $75^{\circ}C$ to $3.4{\times}10^2/m{\ell}$ at $100^{\circ}C$. Coliforms were not found at $70^{\circ}C$ and thermoduric bacteria, thermophiles, psychrotrophic bacteria, mould and yeast decreased rapidly as the heat treatment increased. 4. The results of Keeping quality test for high temperature pasteurized milk showed that the' milks preserved at $25^{\circ}C$ and $37^{\circ}C$ were clotted just after 1 day but the milk preserved at $4^{\circ}C$ showed good shelf life which did not have any deterioration in titratable acidity, microorganisms and com positions.

  • PDF

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

A Comparison of Discriminating Powers Between 14 Microsatellite markers and 60 SNP Markers Applicable to the Cattle Identification Test (소 동일성 검사에 적용 가능한 14 Microsatellite marker와 60 Single Nucleotide Polymorphism marker 간의 판별 효율성 비교)

  • Lim, Hyun-Tae;Seo, Bo-Yeong;Jung, Eun-Ji;Yoo, Chae-Kyoung;Yoon, Du-Hak;Jeon, Jin-Tae
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.353-360
    • /
    • 2009
  • When 14 microsatellite (MS) markers were applied in the identifying test for 480 Hanwoo, the discriminating power was estimated as $3.43{\times}10^{-27}$ based on the assumption of a random mating group (PI). This rate is 1,000 times higher than that of 60 single nucleotide polymorphism (SNP) markers. On the other hand, the power of the 60 SNP markers was estimated as $4.69{\times}10^{-20}$ and $8.02{\times}10^{-12}$ on the assumption of a half-sib mating group ($PI_{half-sibs}$) and a full-sib mating group ($PI_{sibs}$), respectively. These powers were 10 times and 10,000 times higher than those of the 14 MS markers. The results indicated that the total number of alleles (MS vs SNP = 146 vs 120) acted as a key factor for the discriminating power in a random mating population, and the total number of markers (MS vs SNP = 14 vs 60) was a dominant influence on the power in half-sib and full-sib populations. In the Hanwoo population, in which it was assumed that the entire population is the enormous half-sib group formed by the absolute genetic contribution of a few nuclear bulls, there will be only a 10 times difference in the discriminating power between the 14 MS markers and the 60 SNP makers. However, the probability of not excluding a candidate parent pair from the parentage of an arbitrary offspring, given that only the genotype of the offspring ($PNE_{pp}$) was 1,000 times higher as shown by the 14 MS markers than that by the 60 SNP markers. The strong points of SNP makers are the stability of the variation (low mutation rate) and automation of high-throughput genotyping. In order to apply these merits for the practical and constant Hanwoo identity test, research and development are required to set a cost-effective platform and produce a homemade apparatus for SNP genotyping.

Physico-chemical and Microbiological Changes of Traditional Meju during Fermentation in Kangweondo Area (강원도 지방의 재래식 메주 발효중 이화학적 특성 및 미생물의 변화)

  • Yoo, Jin-Young;Kim, Hyeon-Gyu;Kim, Wang-June
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.908-915
    • /
    • 1998
  • By using Korean native soybean, traditional meju was prepared in Chuncheon, Kangweondo according to the traditional process. Analysis of physico-chemical, enzymatic and microbiological changes during meju fermentation were carried out in order to obtain a basic information for industrial scale production of meju. The enviroments for natural meju fermentation were $10{\sim}15^{\circ}C$ and $60{\sim}70%{\;}RH$. Moisture content decreased from 59% to 11% (exterior section) and 19% (interior section). the pH of meju rapidly increased up to 8.5 at $33^{rd}{\;}day$ of fermentation and thereafter decreased down to 7.9 at $70^{th}{\;}day$ of fermentation. Souble protein content was 1.47% at initial stage and increased up to $6.31{\sim}7.34%$ at $33^{rd}{\;}day$ of fermentation. Amino nitrogen content was $460{\sim}770{\;}mg%$ at $70^{th}{\;}day$ of fermentation. the color of meju became gradually black and decreased in redness and yellowness. During the process, protease and lipase seemed to play an important role in the digestion of soy protein and fat. Acidic protease activity increased up to $135.9{\sim}152.4{\;}unit/g$ at $33^{rd}{\;}day$ of fermentation and were $181.3{\sim}272.6{\;}unit/g$ at $70^{th}{\;}day$ of fermentation. Lipase activity increased up to 6 unit/g (interior section) and 15 unit/g (exterior section) at $70^{th}{\;}day$ of fermentation. the viable cell count of meju was at the level of $10^8{\;}CFU/g$ during the overall fermentation period. Aerobic halophilic count was $1.51{\times}10^7{\;}CFU/g$ at initial stage and maintained $10^8{\;}CFU/g$ level during the process. Initial anaerobic cell count was $2.0^9{\times}10^4{\;}CFU/g$ and increased up to $10^5{\;}CFU/g$ level at 47 days. Yeast and mold counts were $10^4{\sim}10^5{\;}CFU/g$ for the fermentation period.

  • PDF

A Study on Establishing a Standardized Process for the Development and Management of Food Safety Health Indicators in Korea (우리나라 식품안전보건지표의 개발 및 운용과정 정립에 대한 연구)

  • Byun, Garam;Choi, Giehae;Lee, Jong-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.217-226
    • /
    • 2015
  • This study was conducted to establish a standardized process for developing food safety health indicators. With this aim, we proposed a standardized process, accessed the validity of the suggested process by performing simulations, and provided a method to utilize the indicators. Developing process for domestic environmental health indicators was benchmarked to propose a standardized process for developing food safety health indicators, and DPSEEA framework was applied to the development of indicators. The suggested standardized process consists of an exploitation stage and a management stage. In the exploitation stage, a total of 6 procedures (initial indicators suggestion, candidate indicators selection, data availability assessment, feasibility assessment, pilot study, and final indicator selection) are conducted, and the indicators are routinely calculated and officially announced in the management stage. The exploitation stage is operated by an interaction between a task force team who manages the overall process, and an advisory committee (minimum of 4 in academia, 2 in research, 4 in specialists of Ministry of Food and Drug Safety) who reviews and performs evaluations on the indicators. The standardized process was simulated with 45 initial indicators, and total of 4 indicators (17 detailed indicators) were selected: 'Proportion of domestic fruit/vegetable receiving 'acceptable' in the evaluation of pesticide/herbicide residues', 'Food-borne disease outbreaks', 'Food-borne legal infectious disease incidence', 'Salmonellosis incidence'. Synthetic food safety health index was derived by calculating percent difference with the data from 2010 to 2012. Results showed that when comparing the year 2010 to 2011, and 2011 to 2012, the overall food safety status improved by 10.37% and 9.87%, respectively. In addition, the contribution of indicators to the overall food safety status can be determined by looking into the individual indicators, and the synthetic index may be illustrated to enhance the ease of interpretation to the public and policy makers. In overall, food health safety indicators can be useful in many ways and therefore, attention should be drawn to conduct further studies and establish related legislations.