• Title/Summary/Keyword: 탑승자손상

Search Result 17, Processing Time 0.021 seconds

Factors affecting injury severity of occupant in rollover accident (전복사고에서의 탑승자 손상중증도에 미치는 요인 분석)

  • Hyuk Jin Jeon;Sang Chul Kim;Kang Hyun Lee;Ho Jung Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Fatality of accidents on curved roads where rollover accidents are likely to take place was higher than that on straight roads. We ought to investigate factors affecting injury severity of occupant in a vehicle rollover accident. From January 2011 to December 2013, we collected data about rollover motor vehicle crash accident. We surveyed occupant's injury, vehicle type, safety devices, type of rollover accident and the number of turn in accident. Of the 132 subjects, 56.1% were males, 50.8% were drivers, 48.5% fastened seat belt, and air bag deployed in 12.1%. Among injuries sustained head, chest and abdomen were major sites of severe injury(Abbreviated injury scale>2). Seat belt use, rollover type, and the number of 1/4 turn were found to have significant positive correlations with Injury Severity Score. The regression analysis herein found significance in safety belt use and the number of 1/4 turn. Seat belt use was a significant factor affecting injury severe of occupant in rollover accident.

A Safety Assessment on Light Weight Wheelchair Occupant in Frontal Crash (경량 휠체어 탑승자의 차량 전방충돌시 안전성 평가)

  • 김성민;김성재;강태건
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2003
  • In this study, for a safetv assessment of light weight wheelchair occupant in frontal crash, we tested a dynamic sled impact test. we carried out total 6 times test and impact speed was 20g/48 km/h. By using Hybrid III 50%ile male dummy, head injury criteria(HIC), neck flexion moment, neck axial tension force, neck shear force. chest acceleration, head, wheelchair and knee excursion were measured, we evaluated light weight wheelchair occupant safety by motion criteria(MC) which proposed in SAE J2249 and combined injury criteria(CIC) which is a voluntary standard(GM-IARV) of General Motors Co.. when we assumed that the maximum injury value in frontal crash was 100%, the result of motion criteria(MC) of wheelchair occupant was 52%, occupant upper body injury index(CIC) was 60.1%.

A Real-world Accident Study on Vehicle Damage Types and Occupant Injury (자동차사고 손상유형과 상해에 관한 실사고 연구)

  • Hong, Seungjun;Park, Wonpil;Ha, Sungyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.107-112
    • /
    • 2013
  • Base on insurance vehicle collision and bodily injury claim reports, 23,655 cases of vehicle to vehicle accidents occurred in Korea 2010 are investigated in order to understand vehicle damage severities, repair costs and occupant injury types. The results of our statistical analysis reveal that minor damages with small dent or scratches on vehicle body panels which is assumed to imply during very low speed crashes are major portion of accident severities types. The most vulnerable body regions due to the real-world accident are neck. The 86.3% of total injured driver in minor rear damaged vehicles has reported neck pains and they are followed by whole bodies and head but with much lower occurrence rates.

Evaluation of the Protection Performance of SB4 Class Concrete Barrier with Anti-Glare Function (SB4 등급 방현기능 콘크리트 방호울타리의 방호성능 평가)

  • Joo, Bongchul;Hong, Kinam;Yun, Junghyun;Lee, Jaeha;Kim, Jungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • This paper describes the process of developing a concrete median barrier of SB4 grade with anti-glare function. The development section has a height and width of 1,270mm and 560mm, respectively. A wire mesh is placed in the center of the cross section to improve the protection performance. Collision analysis predicted that this section satisfies the strength and occupant protection performance, and that no damage to the barrier occurs. In the actual collision test, it was confirmed that this section satisfies the strength and occupant protection performance. However, damage was observed on two concrete barrier when the truck crashed. In order to improve the accuracy of the collision analysis of the concrete barrier in the future, it is considered that a study on the model development and continuous collision analysis method for domestic commercial vehicles should be carried out.

Impact Conditions of Performance Evaluation, and Development of High-Performance Roadside Barrier for Longitudinal Barriers in Smart Highway (스마트하이웨이 종방향 베리어 성능평가 충돌조건과 고성능 노측용 베리어 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Jang, Dae-Young
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.59-67
    • /
    • 2011
  • To minimize the degree of damage in the SMART highway's punctuality and safety occurred from the car-barrier collisions, the impact conditions for longitudinal barriers in SMART highway was determined to be significantly larger than the existing maximum impact conditions. Results from computer simulation runs show that the existing domestic highest-performance roadside barrier did not satisfy the suggested impact conditions. The newly developed N-class barrier designed with computer simulation model and verified by full-scale crash tests has satisfied the SMART highway impact conditions in terms of occupant safety indexes and structural adequacy.

Impact Condition of Safety Performance Evaluation for Longitudinal Barriers of SMART Highway (스마트하이웨이 종방향 방호울타리안전성능 평가를 위한 충돌조건)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.49-57
    • /
    • 2009
  • To minimze the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions, the impact condition for longitudinal barriers of SMART highway was determined to be quite larger than the existing maximum impact condition. The impact condition consists of impact vehicles, impact velocities, and impact angles. To consider the occupant safety of passenger cars as much as possible, a small car with high risk during impact was selected as the impact vehicle for the evaluation of occupant risk. The impact velocity was determined to be 20% larger than the existing maximum impact velocity in order to include accident impact velocities as much as possible. The impact angle was determined to include most of expected accident impact angles. Computer simulations using various impact conditions were conducted for the existing domestic highest-performance medium and roadside barrier. How the suggested impact condition has an effect on the occupant safety was investigated. The existing domestic highest-performance medium and roadside barriers could not satisfy the suggested impact condition. New high-performance longitudinal barriers are required to minimize the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions.

Occupant Neck Injury Assessment Caused by Backward Movement of a Preceding Vehicle at a Low Impact Velocity (선행 차량의 후진에 의한 저속 충돌 시 탑승자 경추 상해에 대한 연구)

  • Kim, Seongjin;Jeon, Woojung;Park, Woosik;Seo, Youngil;Son, Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2013
  • This study assesses neck injury of occupants in a real traffic accident case that a preceding vehicle moved backward and impacted a parked vehicle at a low velocity. This case is different from a case of whiplash injury caused by rear impact on vehicle. The impact velocity was estimated from damages of the two vehicle bumpers and the displacement of the parked vehicle was also estimated from CCTV images. MADYMO simulation was performed based on the vehicle specifications and investigation report. The comparison of neck flexion moments with the corresponding injury criteria revealed that occupants of the parked vehicle might have hardly neck injury.

승객석 Restraiant System의 구속 효과와 인체상해 연구 -어린이(6세)탑승자 중심으로-

  • 이창민
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.398-405
    • /
    • 1997
  • 과거 8년간의(1985-1992) 통계에 의하면 정면과 측면 충돌시 구속 시스텡의 하나인 Airbag장착 차량의 사망자 및 중상자 수가 현저히 감소하고 있는 것으로 나타나고있다. 그 러나 최근 소비자로 부터의 Airbag에 관한 불만을 보고 받고 있다. 즉 구속효과를 발휘함에 있어 부수적으로 인체 부상을 유발하고 있다는 것이다. 사망내지는 심각한 부상은 방지하고 있으나 경미한 부상은 오히려 증가하고 또한 신체가 적은 여성 운전자나 6세 이하의 어린이 에게는 심각한 부상의 우려가 있다는 것이다. 본 연구에서는 구속시스템의 총아인 Airbag 시스템의 심각한 부수적인 부상 보고를 입증하기 위하여 우리나라 어린이 6세 신체를 기준 으로하여 구속시스템을 착용하지 않았을 경우(실제로 많은 경우), seat belt만 착용시, Airbag만 작용시, 그리고 seat belt와 Airbag을 동시에 사용할 때를 컴퓨터 Simulation Package 이용 신체 dynamic을 모의실험 하였다. 실험결과, 기존에 알려진바와 같이 구속시스템을 사용하지 않았을 경우에 부상은 매우 컸다. 신체 사이즈가 작은 어린이 혹은 여성 운전자의 경우 Seat belt만을 사용한 경우는 Airbag만을 사용한 경우보다는 부상정도가 약간 경미하였으나 두 경우 모두 인체가 구속시스템의 구속 범위를 이탈하여 구속 시스템으로써의 역할을 충분히 하지 못하고 있었다. 특히 Seat belt와 Airbag을 동시에 사용하였을시에도 Airbag이 충분히 개선된 이후라도 신체 사이즈가 작은 경우에는 흉부부위에 의한 충격 흡수가 먼저 이루어지지 못하고, 머리에 먼저 Airbag이 접촉이 되어 충격 흡수 역할보다는 반동효과가 더 커서 머리 및 몸체가 뒤로 Rebound 하는 효과로 머리, 혹은 목의 신체 부상한계를 넘고 있어 큰 부상 내지는 사망에 이르고 있음을 알 수 있었다. 사료된다.의 결과는 자전거 에르고노미터의 결과가 트레드밀의 결과에 87.60%정도 나타났다.음을 관찰하였다. 특히 vitamin C와 E의 병용투여는 상승적으로 적용하여 간세포손상을 더욱 억제시킴을 알 수 있었다.mance and on TFP(Total Factor Productivity) growth which is a pure measure of firm performance. To utilize the advantage of panel data, FEM(Fixed Effect Model) and REM(Random Effect Model) were used. The empirical result shows that the entropy index as a measurement of inter-business relatedness is not significant but technological relatedness index is significant. OLS estimates on pooled data were considerably different from FEM or REM estimates on panel data. By introducing interaction effect among the three variables for business portfolio properties, we obtained three findings. First, only VI (Vertical integration) has a significant positive correlation with ROS. Second, when using TFP growth as an dependent variable, both TR(Technological Relatedness) and f[ are significant and positively rel

  • PDF

Analysis of Ambulance Traffic Accident During Driving (국내 구급차량의 운행 중 사고 분석에 관한 조사 연구)

  • Shin, Dong-min;Yoon, Byung-gil;Han, Yong-taek
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.130-137
    • /
    • 2016
  • The purpose of this study is to investigate the circumstances surrounding collisions involving ambulances with an aim to improving the safe operation of emergency services. Collisions are relatively common within paramedic emergency services. We analyzed the time, injury site, and any other specific factors of 908 collisions occurring within four cities. Within our study 29.6% of paramedics have been involved in accidents while responding to an emergency call, with the main cause of the accident being signal violation (35.7%), and is the other party's negligence (22.2%). 92.1% of these accidents occurred while the emergency lights were being operated. XX% of accidents took place in the afternoon, while xx% took place within the hours of xx:xx and xx:xx, during which time there is generally lower levels of traffic, which can cause severe brain and neck damage of 14.4% but the other part is 62.1%. (Ed note; this is not clear at all. 14.4% of collisions resulted in severe head and neck injuries, while 23.5% of collisions resulted in no injury. According to the respondents, defensive driving (xx%), observance of traffic laws (xx%), safe driving habits (xx%)to paramedics were the most critical factors in evading collision. Signal passes were identified as the most common cause of collision (70.1%). Although the majority of collisions occurred while the emergency lights were operational, the damage can cause severe damage at the time of accident occurred.

Parameter Analysis to Predict Cervical Spine Injury on Motor Vehicle Accidents (탑승자 교통사고에서 경추손상 판단을 위한 중증도 요인 분석)

  • Lee, Hee Young;Youk, Hyun;Kong, Joon Seok;Kang, Chan Young;Sung, Sil;Lee, Jung Hun;Kim, Ho Jung;Kim, Sang Chul;Choo, Yeon Il;Jeon, Hyeok Jin;Park, Jong Chan;Choi, Ji Hun;Lee, Kang Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.3
    • /
    • pp.20-26
    • /
    • 2018
  • It was a pilot study for developing an algorithm to determine the presence or absence of cervical spine injury by analyzing the severity factor of the patients in motor vehicle occupant accidents. From August 2012 to October 2016, we used the KIDAS database, called as Korean In-Depth Accident Study database, collected from three regional emergency centers. We analyzed the general characteristics with several factors. Moreover, cervical spine injury patients were divided into two groups: Group 1 for from Quebec Task Force (hereinafter 'QTF') grade 0 to 1, and group 2 for from QTF grade 2 to 4. The score was assigned according to the distribution ratio of cervical spine injured patients compared to the total injured patients, and the cut-off value was derived from the total score by summation of the assigned score of each factors. 987 patients (53.0%) had no cervical spine injuries and 874 patients (47.0%) had cervical spine injuries. QTF grade 2 was found in 171 patients (9.2%) with musculoskeletal pain, QTF grade 3 was found in 38 patients (2.0%) with spinal cord injuries, and QTF grade 4 was found in 119 patients (6.4%) with dislocation or fracture, respectively. We selected the statistically significant factors, which could be affected the cervical spine injury, like the collision direction, the seating position, the deformation extent, the vehicle type and the frontal airbag deployment. Total score, summation of the assigned each factors, 10 was presented as a cut-off value to determine the cervical spine injury. In this study, it was meaningful as a pilot study to develop algorithms by selecting limited influence factors and proposing cut-off value to determine cervical spine injury. However, since the number of data samples was too small, additional data collection and influencing factor analysis should be performed to develop a more delicate algorithm.