• Title/Summary/Keyword: 탐지성능 분석

Search Result 862, Processing Time 0.041 seconds

A Branch Misprediction Recovery Mechanism by Control Independence (제어 독립성과 분기예측 실패 복구 메커니즘)

  • Ko, Kwang-Hyun;Cho, Young-Il
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.3-22
    • /
    • 2012
  • Control independence has been put forward as a significant new source of instruction-level parallelism for superscalar processors. In branch prediction mechanisms, all instructions after a mispredicted branch have to be squashed and then instructions of a correct path have to be re-fetched and re-executed. This paper presents a new branch misprediction recovery mechanism to reduce the number of instructions squashed on a misprediction. Detection of control independent instructions is accomplished with the help of the static method using a profiling and the dynamic method using a control flow of program sequences. We show that the suggested branch misprediction recovery mechanism improves the performance by 2~7% on a 4-issue processor, by 4~15% on an 8-issue processor and by 8~28% on a 16-issue processor.

Development of continuous blood pressure measurement system using ECG and PPG (ECG와 PPG를 이용한 실시간 연속 혈압 측정 시스템)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Nam, Ki-Chang
    • Science of Emotion and Sensibility
    • /
    • v.11 no.2
    • /
    • pp.235-244
    • /
    • 2008
  • This study is to develop automatic extraction system of continuous blood pressure using ECG (Electrocardiogram) and PPG(Photoplethysmography) for u-health care technology. PTT (Pulse Transit Time) was determined from peak difference between ECG and PPG and its inverse made to get blood pressure. Since the peaks were vulnerable to be contaminated from noise and variation of amplitude, this study developed the adaptive algorithm for peak calculation in any noise condition. The developed method of the adaptive peak calculation was proven to make the standard deviations of PPT decrease to 28% and the detection of noise increase to 18%. Also, the correlation model such as blood pressure = -0.044 $\cdot$ PTT + 133.592 has successfully been determined for predicting the continuous pressure measured without using cuff but with using PPG and ECG, only.

  • PDF

Detection of Music Mood for Context-aware Music Recommendation (상황인지 음악추천을 위한 음악 분위기 검출)

  • Lee, Jong-In;Yeo, Dong-Gyu;Kim, Byeong-Man
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.263-274
    • /
    • 2010
  • To provide context-aware music recommendation service, first of all, we need to catch music mood that a user prefers depending on his situation or context. Among various music characteristics, music mood has a close relation with people‘s emotion. Based on this relationship, some researchers have studied on music mood detection, where they manually select a representative segment of music and classify its mood. Although such approaches show good performance on music mood classification, it's difficult to apply them to new music due to the manual intervention. Moreover, it is more difficult to detect music mood because the mood usually varies with time. To cope with these problems, this paper presents an automatic method to classify the music mood. First, a whole music is segmented into several groups that have similar characteristics by structural information. Then, the mood of each segments is detected, where each individual's preference on mood is modelled by regression based on Thayer's two-dimensional mood model. Experimental results show that the proposed method achieves 80% or higher accuracy.

City Gas Pipeline Pressure Prediction Model (도시가스 배관압력 예측모델)

  • Chung, Won Hee;Park, Giljoo;Gu, Yeong Hyeon;Kim, Sunghyun;Yoo, Seong Joon;Jo, Young-do
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.33-47
    • /
    • 2018
  • City gas pipelines are buried underground. Because of this, pipeline is hard to manage, and can be easily damaged. This research proposes a real time prediction system that helps experts can make decision about pressure anomalies. The gas pipline pressure data of Jungbu City Gas Company, which is one of the domestic city gas suppliers, time variables and environment variables are analysed. In this research, regression models that predicts pipeline pressure in minutes are proposed. Random forest, support vector regression (SVR), long-short term memory (LSTM) algorithms are used to build pressure prediction models. A comparison of pressure prediction models' preformances shows that the LSTM model was the best. LSTM model for Asan-si have root mean square error (RMSE) 0.011, mean absolute percentage error (MAPE) 0.494. LSTM model for Cheonan-si have RMSE 0.015, MAPE 0.668.

Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm (SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구)

  • Wang Yudong;Sangbong Park;Jeonghwa Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.843-847
    • /
    • 2023
  • In this paper, we propose a model for detecting efficient fire identification to prevent fires that can lead to various industrial accidents, farmland and large forest fires, with the widespread use of various chemicals and flammable substances as modern technology advances. This paper presents an algorithm that can detect fire smoke in a high-efficiency and short time using images, and an algorithm based on SVM(Support Vector Machine) and K fold cross-verification technologies. By analyzing images, fire and smoke detection algorithms have relatively superior detection performance compared to existing algorithms, and the analysis of fire and smoke characteristics detected in this paper is analyzed stably and efficiently and is expected to be used in various fields that may be exposed to fire risks in the future.

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

Cybertrap : Unknown Attack Detection System based on Virtual Honeynet (Cybertrap : 가상 허니넷 기반 신종공격 탐지시스템)

  • Kang, Dae-Kwon;Hyun, Mu-Yong;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.863-871
    • /
    • 2013
  • Recently application of open protocols and external network linkage to the national critical infrastructure has been growing with the development of information and communication technologies. This trend could mean that the national critical infrastructure is exposed to cyber attacks and can be seriously jeopardized when it gets remotely operated or controlled by viruses, crackers, or cyber terrorists. In this paper virtual Honeynet model which can reduce installation and operation resource problems of Honeynet system is proposed. It maintains the merits of Honeynet system and adapts the virtualization technology. Also, virtual Honeynet model that can minimize operating cost is proposed with data analysis and collecting technique based on the verification of attack intention and focus-oriented analysis technique. With the proposed model, new type of attack detection system based on virtual Honeynet, that is Cybertrap, is designed and implemented with the host and data collecting technique based on the verification of attack intention and the network attack pattern visualization technique. To test proposed system we establish test-bed and evaluate the functionality and performance through series of experiments.

Moving Object Detection and Tracking Techniques for Error Reduction (오인식률 감소를 위한 이동 물체 검출 및 추적 기법)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • In this paper, we propose a moving object detection and tracking algorithm based on multi-frame feature point tracking information to reduce false positives. However, there are problems of detection error and tracking speed in existing studies. In order to compensate for this, we first calculate the corner feature points and the optical flow of multiple frames for camera movement compensation and object tracking. Next, the tracking error of the optical flow is reduced by the multi-frame forward-backward tracking, and the traced feature points are divided into the background and the moving object candidate based on homography and RANSAC algorithm for camera movement compensation. Among the transformed corner feature points, the outlier points removed by the RANSAC are clustered and the outlier cluster of a certain size is classified as the moving object candidate. Objects classified as moving object candidates are tracked according to label tracking based data association analysis. In this paper, we prove that the proposed algorithm improves both precision and recall compared with existing algorithms by using quadrotor image - based detection and tracking performance experiments.

A Study on Detecting Selfish Nodes in Wireless LAN using Tsallis-Entropy Analysis (뜨살리스-엔트로피 분석을 통한 무선 랜의 이기적인 노드 탐지 기법)

  • Ryu, Byoung-Hyun;Seok, Seung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • IEEE 802.11 MAC protocol standard, DCF(CSMA/CA), is originally designed to ensure the fair channel access between mobile nodes sharing the local wireless channel. It has been, however, revealed that some misbehavior nodes transmit more data than other nodes through artificial means in hot spot area spreaded rapidly. The misbehavior nodes may modify the internal process of their MAC protocol or interrupt the MAC procedure of normal nodes to achieve more data transmission. This problem has been referred to as a selfish node problem and almost literatures has proposed methods of analyzing the MAC procedures of all mobile nodes to detect the selfish nodes. However, these kinds of protocol analysis methods is not effective at detecting all kinds of selfish nodes enough. This paper address this problem of detecting selfish node using Tsallis-Entropy which is a kind of statistical method. Tsallis-Entropy is a criteria which can show how much is the density or deviation of a probability distribution. The proposed algorithm which operates at a AP node of wireless LAN extracts the probability distribution of data interval time for each node, then compares the one with a threshold value to detect the selfish nodes. To evaluate the performance of proposed algorithm, simulation experiments are performed in various wireless LAN environments (congestion level, how selfish node behaviors, threshold level) using ns2. The simulation results show that the proposed algorithm achieves higher successful detection rate.

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.