• Title/Summary/Keyword: 탈황.탈질

Search Result 54, Processing Time 0.026 seconds

Effect of an Additives on Simultaneous Removal of NOx, $So_2$by Corona Discharge (코로나 방전에 의한 NOx, $So_2$동시제거에서 첨가제의 영향)

  • 박재윤;고용술;이재동;손성도;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.451-457
    • /
    • 2000
  • Experimental investigations on the effect of two kinds of additives ; aqueous NaOH solution and ammonia(NH$_3$) for removal of NOx and SO$_2$ simultaneously by corona discharge were carried out. The simulated combustion flue gas was[NO(0.02[%])-SO$_2$(0.08[%])-$CO_2$-Air-$N_2$] Volume percentage of aqueous NaOH solution used was 20[%] and $N_2$flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution Ammonia gas(14.81[%]) balanced by argon was diluted by air. NH$_3$ molecular ratios(MR) based on [NH$_3$] and [NO+SO$_2$] were 1, 1.5 and 2.5 The vapour of aqueous NaOH solution and NH$_3$was introduced to the main simulated combustion flue gas duct through injection systems which were located at downstream of corona discharge reactor. NOx(NO+NO$_2$) removal rate by injecting the vapour of aqueous NaOH solution was much better than that by injecting NH$_3$however SO$_2$removal rate by injecting NH$_3$was much better than that by injecting the vapour of aqueous NaOH SO$_2$removal rate slightly increased with increasing applied voltage. When the vapour of aqueous NaOH solution and NH$_3$were simultaneously injection NOx and SO$_2$ removal rate were significantly increased.

  • PDF

A Patent Analysis on Impurity Removal and Catalysts for Crude Oil Purification (원유 불순물 제거 및 정제 관련 촉매 기술에 대한 특허 분석)

  • Jo, Hee-Jin;Moun, Seong-Guen;Jo, Young-Min;Chung, Yon-Soo
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • As crude oil with heavier and/or highly oxidized components prevails, purification technologies such as desulfurization, denitrilization and demetalization have become important issues to control contents of sulfur and other impurities affecting the quality of petroleum. Also, the importance of catalyst technologies related with crude oil purification has been emphasized to control the production and yield of products. In this paper, technology trends of impurity removal such as sulfur, nitrogen and metal components from crude oil and catalysts related with purification of crude oil were studied through patent analysis. The patents published or registered in Korea, U. S. A., Japan, and Europe from mid 1970's to 2009 had been analyzed based on the application tendency, the distribution of major applicants, and their active indices, etc. The technology flow was figured out to see the technology trends.

Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Pulse Corona induced Plasma Chemical Processing (PPCP에 의한 연소가스 중 NOx, SOx 동시제거 특성)

  • Park, Jae-Yoon;Koh, Yong-Sul;Jung, Jang-Gun;Kim, Jung-Dal
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.211-216
    • /
    • 2000
  • In this paper, experimental investigations were carried out to remove NOx, SOx simultaneously from a simulated combustion flue gas [$NO(0.02%)-SO_2(0.08%)-CO_2-Air-N_2$] by using a pulse corona induced plasma chemical processing. Discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was $2.5{\ell}/min$ for bubbling aqueous NaOH solution. Ammonia gas(l4.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio(MR) was determined based on [$NH_3$] and [$NO+SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration. but SOx removal rate was not significantly affected by initial concentration. The NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF

Simultaneous Removal of $SO_2$ and NOx Using Ozone Generator and Absorption- Reduction Technique (오존발생장치와 흡수환원법을 이용한 배기가스 동시 탈황 탈질 공정)

  • Mok, Young-Sun;Lee, Joo-Hyuck;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 2006
  • The injection of ozone, produced by dielectric barrier discharge, into the exhaust gas gives rise to a rapid oxidation of NO that is the main component of nitrogen oxides($NO_x$) in most practical exhaust gases. Once NO is converted into $NO_2$, it on readily be reduced to $N_2$ in the next step by a reducing agent such as sodium sulfide and sodium sulfite. The reducing agents used ca also remove $SO_2$ effectively, which makes it possible to treat $NO_x\;and\;SO_2$ simultaneously. The present two-step process made up of an ozonizing chamber and an absorber containing a reducing agent solution was able to remove about 95% of the $NO_x$ and 100% of the $SO_2$, initially contained in the simulated exhaust gas. The formation of $H_2S$ from sodium sulfide was prevented by using a strong basic reagent(NaOH) together with the reducing agent. The removal of $NO_x$\;and\;SO_2$ was more effective for $Na_2S$ than $Na_2SO_3$.