• Title/Summary/Keyword: 탈출 경로 결정 알고리즘

Search Result 3, Processing Time 0.017 seconds

Passenger Ship Evacuation Simulation using Algorithm for Determination of Evacuating Direction based on Walking Direction Potential Function (보행 방향 포텐셜 함수 기반의 탈출 경로 결정 알고리즘을 이용한 여객선 승객 탈출 시뮬레이션)

  • Ha, Sol;Cho, Yoon-Ok;Ku, Namkug;Park, Kwangphil;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.307-313
    • /
    • 2013
  • This paper presents a simulation for passenger ship evacuation considering determination of evacuating direction based on walking direction potential function. In order to determine walking direction of a passenger, his/her position in two dimensional plane was adopted as a design variable, and fixed boundaries such as walls and obstacles were adopted as constraints. To solve this optimum problem, a walking direction potential function was adopted as an objective function. This potential function was configured as a kind of penalty function and it contained two components. One is a potential function concerned with the distance to the destination, and other is a potential function based on the effect of walls and obstacles. To determine evacuating direction, this problem was solved by minimizing the walking direction potential function every unit time during the simulation. The crowd behavior of the passenger consisted of the flock behavior, a form of collective behavior of a large number of interacting passengers with a common group. With the proposed algorithm, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) were implemented and the direction of passengers and total evacuation time was analyzed.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

연안·항만에서의 선박사고 예방 및 대응 지원 기술 개발 소개

  • Yang, Chan-Su;Jeon, Ho-Gun;Kim, Tae-Ho;Sin, Dae-Un;Park, Jong-Ryul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.39-40
    • /
    • 2019
  • 우리나라는 국제해사기구(IMO)에 "여객선 탈출지도체계의 기술개발에 관한 정보"라는 안건(IMO SSE4/INF2)을 2017년에 제출한 바 있다. 이 의제에 소개된 지능형 선박 및 인명대피 안내시스템(SEGA)은 한국해양과학기술원의 주관으로 한국해양수산부의 지원을 받아 2016년부터 2020년 3월까지 약 4년간의 프로젝트로 개발 중에 있다. SEGA는 데이터 수집과 분석, 정보 표시의 프로세스를 자동화하여 우리나라 연안에서 항해 중인 선박에 비상상황이 발생할 경우 항해자의 의사결정을 지원하는 시스템이다. SEGA 시스템을 지원하기 위해 구축된 SEGA 서버와 데이터베이스는 해양기상정보, 수심정보, 해상교통정보를 처리 한다. 또한 비상상황 시 2차 사고를 방지하기 위해 선박이 대피 할 수 있는 장소에 대한 정보를 사용자가 확인할 수 있도록 알고리즘이 설계되어 있다. 인명안전을 위해 SEGA는 비상상황 시 선박내부 구조정보와 화재 등 변수사항들을 고려하여 승객들에게 빠른 탈출을 위한 최적대피경로를 제공하며, 원격탐사기술을 이용하여 선박주변의 익수자를 탐지하도록 개발 중에 있다. 보다 상세한 내용은 항해항만학회 VTS 특별세션에서 발표할 예정이다.

  • PDF