• Title/Summary/Keyword: 탈질 설비

Search Result 40, Processing Time 0.025 seconds

Trend on the Recycling Technologies for Waste Catalyst by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐촉매(廢觸媒) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Jin-Young;Pak, Jong-Jin;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.53-61
    • /
    • 2013
  • Since the 2000s, to start inducement of SCR(Selective Catalytic Reduction) denitrification facility by large scale companies which are emitted large amount of nitrogen oxides such as power plants, combined heat and power plant, incinerators and chemical plants due to take effect the regulation of stationary sources of nitrogen oxide(NOx), and the total amount of discharged pollutants, such as regulatory gradually emissions regulations are being strengthened and the expanded coverage due to the use of SCR denitrification catalyst is a growing trend. Since 2010 due to the new catalysts to replace the already installed power plants and incinerators due to inactive, and catalytic denitrification SCR waste catalyst waste as a resource rather than the development of technologies for recycling situation is urgently needed. In this study, analyzed paper and patent for recycling technologies of waste catalyst. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1975 to 2012. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

Technical Development of Flue Gas Control at Commercial Plant Using the Non-thermal Plasma Process (저온 플라즈마 공정을 이용한 상용설비의 배연가스 처리 기술개발)

  • Yoo, J.S.;Paek, M.S.;Kim, T.H.;Kim, J.I.;Kim, Y.S.;Choi, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.939-944
    • /
    • 2001
  • For the application of simultaneous $DeSO_{2}\;&\;DeNO_{x}$ equipment using non-thermal plasma process to the industrial and power plants, the many types of plasma device and process were studied. The e-beam and pulsed plasma corona discharge process are outstanding for the study to apply commercial large-scale plant from among these. In this paper, non-thermal plasma of technical trends and the characteristics of system developed by Doosan heavy industries & construction Co., Ltd. are explained. We have researched pulsed plasma corona discharge process since 1994. At the basis of reasonable results for the pilot plant, we constructed the demonstration plant at a domestic coal-fired power plant in 1999, as the previous step for commercial use. In near future, enough information about designs and costs of commercial-size system will be obtained.

  • PDF

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.

Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor (폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E $K_y$) was evaluated to be 0.12/hr.

A Study on the Factors Affecting the Influence Ranges of Ammonia Leakage by Using KORA Program (KORA 프로그램을 활용한 암모니아 누출사고 영향범위 결정 기여요인 연구)

  • Lim, Hyeongjun;Kwak, Sollim;Jung, Jinhee;Ryu, Taekwon;Choi, Woosoo;Lee, Jieun;Lee, Jinseon;Lee, Yeonhee;Kim, Jungkon;Yoon, Junheon;Ryu, Jisung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Ammonia is used primarily as a refrigerant in refrigeration facility and SCR of a plant, and is frequently involved in leakage accidents. This study was conducted by selecting ammonia, a material with a wide influence range when evaluated, as a material with higher vapor pressure and lighter than air. In this study, the influence ranges were computed using KORA(Korea Off-site Risk Assessment supporting tool) with four different environmental factors : ground roughness, sealing, operating temperature, pressure, and leakage hole size. As a result, the difference in the influence range of ground roughness is approximately 4.62 times, while the ammonia storage tank shows a difference in the reduction rate of 0.64 when sealed. The extent of impact increased with increasing leakage depending on storage temperature and pressure, and when storing higher than the saturation vapor pressure, the impact range showed an average growth rate of 3.45 % per 0.1 Mpa($45^{\circ}C$). The influence ranges based on the size of the leakage holes is shown to be proportional to the area of the leakage zone.

Deactivation of $V_2O_5/TiO_2$ catalyst used in Orimulsion Fuel Power Plant for the Reduction of Nox (배연 탈질용 $V_2O_5/TiO_2$ 촉매의 오리멀젼 연소에 의한 비활성화)

  • Lee, In-Young;Lee, Jung-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • Deactivation of SCR catalyst applied in Orimusion fuel power plant was investigated to develope the technique for the regeneration of deactivated SCR catalyst and optimize the operation of SCR facility. The characterization study of the catalysts was carried out using XRD, ICP-AES, SEM and EDS. The NO$_X$ removal activity and SO$_2$ oxidation activity of the catalysts were measured. The NO$_X$ conversion of the deactivated catalyst was 5$\sim$10% lower than that of the fresh catalyst and the value of SO$_2$conversion to SO$_3$ over the deactivated catalyst was about 0.59% higher than that of the fresh catalyst. Vanadium(V), Magnesium(Mg) and Sulfur(S) were largely accumulated in the deactivated catalyst. The accumulation of Vanadium(V) and Sulfur(S) is due to the components of the Orimulsion fuel and the accumulation of Magnesium(Mg) is due to MgO that is injected in the boiler to prevent the oxidation of SO$_2$ to SO$_3$. The diffraction line of the TiO$_2$ of the deactivated catalyst was identified as the crystalline peaks of anatase as the fresh catalyst.

A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo;Park, Chan Hyuk;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.152-158
    • /
    • 2016
  • Nitrogen oxide is generated by the chemical reaction of oxygen and nitrogen in higher temperature environment of combustion facilities. The NOx reduction equipment is generally used in the power plant or incineration plant and it causes enormous cost for the construction and maintenance. The flue gas recirculation method is commonly adopted for the reduction of NOx formation in the combustion facilities. In the present study, the computational fluid dynamic analysis was accomplished to elucidated the cold flow characteristics in the flue gas recirculation burner with coanda nozzles in the flue gas recirculation pipe. The inlet and outlet of flue gas recirculation pipes are directed toward the tangential direction of circular burner not toward the center of burner. The swirling flow is formed in the burner and it causes the reverse flow in the burner. The ratio of flue gas recirculation flow rate with the air flow rate was about 2.5 for the case with the coanda nozzle gap, 0.5mm and it was 1.5 for the case with the gap, 1.0mm. With the same coanda nozzle gap, the flue gas recirculation flow rate ratio had a little increase when the air flow rate changes from 1.1 to 2.2 times of ideal air flow rate.

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

A Study on the Mixing of Dilution Air and Ammonia in the Ammonia Mixing Pipe of the Thermal Power Plant De-NOx Facility (화력발전소 탈질설비의 암모니아 혼합 관에서 희석 공기와 암모니아의 혼합에 관한 연구)

  • Kim, Ki-Ho;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • According to reinforce environmental regulations, coal power plants have used selective catalytic reduction using ammonia as a reducing agent to reduce the amount of nitrogen oxide generation. The purpose of the present study was to derive a mixing device for effectively mixing dilute air and ammonia in the ammonia mixing pipe by performing computational fluid dynamic analysis. The mixing effect was compared by analysing the %RMS of ammonia concentration at the down stream cross section in the mixing pipe and the 16 outlets based on the case 1-1 shape, which is an existing mixing pipe without a mixing device. The mixing device was performed by changing the positions of a square plate on the downstream side of the ammonia supply pipe and an arc-shaped plate on the wall of the mixing pipe. In the case of the existing geometry(Case 1-1), the %RMS of ammonia concentration at the 16 outlets was 29.50%. The shape of the mixing device for Case 3-2 had a square plate on the downstream side of the ammonia supply pipe and an arc plate was installed adjacent to it. The %RMS of ammonia concentration for Case 3-2 was 2.08% at 16 outlets and it could be seen that the shape of Case 3-2 was the most effective mixing shape for ammonia mixing.

Modeling of Damage Effects Caused by Ammonia Leakage Accidents in Combined Cycle Power Plant (복합화력발전소 내 암모니아 누출 사고에 의한 피해영향 모델링)

  • Eun-Seong Go;Kyeong-Sik Park;Dong-Min Kim;Young-Tai Noh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • This study focuses on modeling the impact of ammonia leakage from the storage tank in a combined cycle power plant's flue gas denitrification facility. It employs accident impact assessments and diffusion models to determine the optimal scenarios for ammonia storage tank leakage accidents. The study considers the operating conditions of variables as standard conditions for predicting the extent of damage. The Taean combined cycle power plant is chosen as the target area, taking into account seasonal factors such as temperature, humidity, wind speed, atmospheric stability, and wind direction. By utilizing a Gaussian diffusion model, the concentration of ammonia gas at various locations is estimated to assess the potential extent of external damage resulting from a leak. The study reveals that in conditions of high temperature and stable atmosphere within the specified range, lower wind speeds contribute to increased damage to the human body due to ammonia diffusion.