• Title/Summary/Keyword: 탈수소화 열처리

Search Result 5, Processing Time 0.017 seconds

A Comparative Study of Dewatering Aid for Digested Sludge by using A Starfish and A Shell (불가사리와 조개껍질을 개량제로 이용한 소화슬러지의 탈수 증진 비교)

  • Lee, Jae-Kwang;Yoo, Dae-Hyun;Lee, Myeon-Ju;Kang, Ho
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2004
  • A study on the enhancement of the dewaterability of sewage sludge was carried out by using the sea waste materials as a dewatering aid. It was made from a starfish and a shell by heating at $105∼700 ^{\circ}C$ and centrifuge and belt press were used as a mechanical dewatering process. The moisture content of sludge cake was reduced by 15∼22% (w/w) after addition of the dewatering aid at the dose of 1∼8 g/100mL of digested sludge. CST (capillary suction time) was measured to evaluate the effect of dewatering aid on sludge dewatering properties. CST was reduced after addition of a shell while increased after addition of a starfish. Enhancement of dewaterability after addition of a shell was better than that of a starfish. The heating temperature effect of the dewatering aid on dewaterability was not clear.

Manufacturing System of Centrifugal Cast Metal Bearing by Dehydrogenation (탈수소 열처리 공정에 의한 원심주조 메탈베어링의 제조 시스템)

  • Kim, Jeung-Hun;Kim, Chung-Gu;Byen, Jea-Young;Lee, Eun-Suk;Yang, Ji-Yung;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.111-117
    • /
    • 2020
  • Centrifugal casting is suitable for producing hollow-products using centrifugal force. Bush type metal bearings are the key parts that facilitate the rotational movement of various machinery. Metal bearings produced by conventional centrifugal casting machines show rotational imbalance. Therefore, after injecting a large amount of material, the product's precision is secured in the secondary processing. Rotational imbalance is caused by the force acting on the rotary disc plate. In order to minimize rotational imbalance, NASTRAN was used for the optimal design and structural analysis. It was concluded that the rotating plate of the conventional centrifugal casting machine should be prevented from tilting. For this purpose, the location & thickness of the stiffeners were obtained through the optimum design. In the conventional centrifugal casting machine, both ends of the product are lower in temperature than the center part, so internal stress occurs. This solves this problem by inserting a heating coil into the rotating plate.

Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment (Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상)

  • You, Jeong-Hyun;Cho, Sung-Wook;Shim, Gun-Choo;Choi, Good-Sun;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.

Preparation of Pt Catalysts for 2-propanol Dehydrogenation using Sol-gel Method (솔-젤법을 이용한 2-propanol 탈수소화 반응 Pt 촉매의 제조)

  • Lee, Yeong-Kweon;Lee, Hwaung;Song, Hyung Keun;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.328-334
    • /
    • 2007
  • Chemical heat pump system of 2-propanol/acetone/hydrogen is most suitable to the recovery of waste heat of power plant. various types of 5 wt% Pt-alumina catalysts were prepared for 2-propanol dehydrogenation using sol-gel method. The characteristics and the dehydrogenation reaction rate of each catalyst were investigated. Pt-alumina xerogel catalyst has excellent reaction rate and good durability in comparison with the existing alumina supported Pt catalysts. Pt-alumina aerogel catalyst had the highest reaction rate in all prepared catalysts, but sufficient aging time was necessary to maintain its reaction rate. A potential advantage of the aerogel catalyst is the fact that the high temperature heat treatment is not required. Without heat treatment or with low temperature heat treatment, the Pt-alumina aerogel catalyst has excellent reaction rate as well as durability and this gives us the economic advantage. Alumina xerogel supported Pt catalyst prepared by incipient wetness method showed good reaction rate, and had good mechanical strength. Blank alumina xerogel prepared by sol-gel method can be used for the support of metal catalysts.

Evaluation on Feed-Nutritional Change of Food Waste According to Different Processing Methods and Trouble-shooting Strategy (음식물쓰레기의 가공처리방법별 사료영양소 함량 변화 평가 및 문제점 개선 방안)

  • Jee, K.S.;Baik, Y.H.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.513-524
    • /
    • 2005
  • This study was conducted to introduce recycling procedures of food waste(FW) as feed according to the dehydration, semi-dehydration fermentation and liquid fermentation methods through the on-site survey of companies related, to trace physico-chemical components and nutritional losses depending upon the processing stage for each method and finally to suggest more desirable methodology for the efficient utilization of FW as animal feed. For the dehydration method, dewatering of FW alone reduced(P<0.05) moisture(approximately 10%) and ether extract contents and increased(P<0.05) fiber contents. Dewatering and subsequent dehydration of FW decreased(P<0.05) contents of ether extract, limiting amino acids such as lysine, methionine and histidine, pepsin digestibility of protein by half, and NaCl content by 40%, increased(P<0.05) contents of fiber, crude ash, Ca and P, and did not alter(P>0.05) pH. The semi-dehydration fermentation method of FW did not affect(P>0.05) the chemical components, pepsin digestibility of protein, pH and NaCl content. For the liquid fermentation method, pasteurization and fermentation of FW decreased(P<0.05) contents of dry matter, ether extract, crude fiber, lysine and NaCl; however, it did not affect(P>0.05) other chemical components, pepsin digestibility of protein and pH. Among the processing methods, nutrient losses were highest for the dehydration method(25% of metabolizable energy loss, 12% of organic matter loss) and little for the semi-dehydration and liquid fermentation methods. The on-site survey of companies related revealed that the existence of foreign materials in FW products were problematic for all the three companies surveyed, thus it was necessary to develop a more efficient screener. Before feeding FW-containing diets to pigs, high quality of protein and energy feedstuffs needed to be fortified for the dehydration method. For the semi-dehydration fermentation method, the scientific diet formulation technology was required at the initial mixing stage. For the liquid fermentation method, possibly most energetic and proteinaceous feeds needed to be supplemented for the normal animal growth.