• Title/Summary/Keyword: 탈설계점 작동

Search Result 25, Processing Time 0.025 seconds

에어터보램제트 엔진의 탈설계점 성능해석

  • Yang, In-Young;Lee, Yang-Ji;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.27-35
    • /
    • 2005
  • In this study, a performance analysis code was developed for the off-design performance analysis of air turbo ramjet(ATR) engine, and the analyses were performed for the pre-designed ATR engine at several operating points in the envelope. Variable intake and thrust nozzle were assumed to cover the wide envelope. Mathematical models for each components were developed to calculate their off-design performance. Simple design formulas were introduced for some components to explore the performance variation versus the design parameters. As a result, the pre-defined engine couldn't cover the entire mission profile. And it was also found that the effect of the pre-cooler was not very great, especially in the region of low Mach number.

  • PDF

Subsonic Performance Analysis of Air Turbo-Ramjet Engine (에어터보램제트 엔진의 아음속 성능 해석)

  • Lee Yangji;Yang Sooseok;Yang Inyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.62-67
    • /
    • 2004
  • This paper investigates the off-design performance of methane-fueled air turbo ramjet(ATR) engine in subsonic flight speed range. The ATR engine was modeled and simulated numerically. Each component was modeled to enable their off-design calculation. Compressor operating point was determined by flow matching with nozzle, and turbine by work matching. The ATR engine exhibited quite different off-design behavior compared to the conventional gas turbine engine.

  • PDF

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF

Steady-state Performance Simulation and Operation Diagnosis of a 2-spool Separate Flow Type Turbofan Engine (2스풀 분리 배기 방식 엔진의 정상상태 성능모사 및 작동 진단)

  • Choo, KyoSeung;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2019
  • There is a growing interest in engine diagnostic technology for gas turbine engines. An engine simulation program, precisely simulating the engine performance, is required in order to apply it to the engine diagnosis technology for engine health monitoring. In particular, the simulation program can predict not only design point performance but also off-design point and partial load performance in accurate. So the engine simulation program for the 2-spool separate flow type turbofan engine was developed and the JT9D-7R4G engine of PW(Pratt & Whitney) was analyzed. The steady-sate performance analysis is conducted at both design and off-design points in flight path and the differences between analysis results of takeoff and cruise conditions are compared. The effect of Reynold's correction method was analyzed as a scaling method of the engine component performance. The simulation results was compared with NPSS.

Study on Performance Modeling of a MT30 Gas Turbine Engine for Marine Ship Applications (선박용 MT30 가스터빈 엔진의 성능 모델링에 관한 연구)

  • Back, Kyeongmi;Ki, Jayoung;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2021
  • In this study, the performance modeling of MT30 gas turbine engine is performed. The design point is determined, and the component performance maps to which the scaling technique is applied are generated using standard maps provided by the commercial program. Off-design point performance analysis is performed with the generated performance model, and this is compared with the performance deck data of the engine. It is confirmed that the data of the performance maps generated by the one-point scaling method had some errors from the performance deck data, and it is determined that correction is necessary to increase the accuracy of the performance model. Therefore, the off-design point analysis is performed by creating the correction performance model in a manner that obtains the scaling factors for each operating point(off-design point) according to the high pressure spool speed.

Study on Component Map Scaling Technique Using a Gas Turbine Test Unit (가스터빈 시험장치를 이용한 구성품 성능선도 축척기법에 관한 연구)

  • 공창덕;고성희;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.105-109
    • /
    • 2003
  • A new scaling method for the prediction of gas turbine components characteristics using experimental data of gas turbine test unit has been proposed. In order to minimize the analyzed performance error in the this study, firstly component maps were constructed by real experimental performance data at some operating conditions and a polynomial obtained from scaling factors at given conditions, and then the simulated performance using the identified maps was compared with the performance result using the currently used traditional scaling method. In comparison, the performance analysis result by the currently used traditional scaling method was met well agreed with the real engine performance at most off-design points except for the design point. However the performance analysis result using the newly proposed scaling method had good agreement with the experimental results within maximum 5% error.

  • PDF

Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK (SIMULINK를 이용한 2-스풀 분리형 배기방식 터보팬 엔진의 구성품 성능맵 생성 및 성능모사에 관한 연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate-flow turbofan engine named (BR715-56) which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

Experimental Study on Fluid Viscosity Effects for Centrifugal Turbopump Efficiency (유체점성에 따른 원심형 터보펌프 효율에 관한 실험적 연구)

  • Kim, Jin-Sun;Choi, Chang-Ho;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.91-100
    • /
    • 2016
  • Efficiency characteristics of centrifugal turbopumps for a liquid rocket engine were investigated. Predicting the performance of pumps for a turbopump assembly test, the variation on pump efficiency by working fluids was analyzed from pump component tests. Water and liquid nitrogen (LN2) were used for the component test, kerosene (Jet A-1) and liquid oxygen (LOX) were adapted for the turbopump assembly (TPU) test as working fluids. Overall performance of the pumps was investigated covering design/off-design operating points and the pump efficiency on the environment of real media (LOX/kerosene) could be modified from the pump component tests.

Parametric Study on Heat Flux Characteristics of a Sub-scale Calorimeter (막냉각량 및 작동점 변화가 액체로켓 칼로리미터의 열유속에 미치는 영향)

  • Kim Jong-Gyu;Lee Kwang-Jin;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok;Cho Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.346-350
    • /
    • 2005
  • Effects of the changes of a film cooling mass flow rate and operating conditions on the heat flux characteristics of the subscale calorimeter were studied. A film cooling ring with twelve orifices is inserted between the injector head and the calorimeter. The calorimeter is composed of nineteen cooling channels. When a mass flow rate of film cooling is 10.5 % of a main fuel mass flow rate, maximum heat flux at the nozzle throat is decreased by 30% compared to that without film cooling. In the OD3(of-design point) test result, maximum heat flux at the nozzle throat is increased by 31% compared to that of the DP(design point) test when a film cooling flow rate is zero.

  • PDF

Development of Chemical Equilibrium CFD Code for Performance Prediction and Optimum Design of LRE Thrust Chamber (액체로켓 추력실의 성능 예측 및 최적 형상 설계를 위한 해석코드 개발)

  • Kim Seong-Ku;Moon Yoon Wan;Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • An axisymmetric compressible flow solver accounting for chemical equilibrium has been developed as an analysis tool exclusively suitable for performance prediction and optimum contour design of LRE thrust chamber. By virtue of several features focusing on user-friendliness and effectiveness including automatical grid generation and iterative calculations with changes in design parameters prescribed through only one keyword-type input file, a design engineer can evaluate very fast and easily the influences of various design inputs such as geometrical parameters and operating conditions on propulsive performance. Validations have been carried out for various aspects by detailed comparisons with the result of CEA code, experimental data of JPL nozzle, actual data for two historical engines, and ReTF data for KSR-III.