• Title/Summary/Keyword: 탈기

Search Result 138, Processing Time 0.029 seconds

A Theoretical Consideration about Effects of Radiation on the Physical Properties of PP (PP 재질의 물성에 미치는 방사선의 영향에 대한 이론적 고찰)

  • 김문수;강덕원;엄희문
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.517-523
    • /
    • 2003
  • The physical properties of polypropylene (PP) membranes under the radiation field were investigated. To calculate radiation flux affecting to PP, it was used MCNP4A Code. The PP membrane and deoxygenation equipment were standardized to bar structure in order to calculate the phonton flux with MCNP4A Code. The change in the properties of the PP membrane to be used in deoxygenation equipment was rarely occurred during the usage work because the radiation level of reactor coolant water was very low level and The doses of radiation workers are very low. From the results, it was found that the Physical properties of PP membranes which used for nuclear power plant reactor coolant water disposal were not rarely changed under the simulated radiation field.

  • PDF

The Study on the Corrosion Behavior of Al-alloy Radiator for Automobile in Fresh Water (청수 중에서 자동차용 Al합금 방열기의 부식거동에 관한 연구)

  • 임우조;이상열;윤대영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.265-270
    • /
    • 2002
  • Most of all the mechanical devices are becoming more high-speed and high-power as well as their used condition being more pollution with rapid development in industrial part. So, it is necessary for these devices to equip cooling system to overcome that kind of severe using condition. Industrial development and income increase causes rapid increase in using fossilenergy and it results in accelerating environmental pollution owing to the increasement in emission of air pollution substance. Specially, fresh water like stream and river water is acidified. Therefore, corrosion damage is accelerated in radiator for automobile that is using acidified water. So, in this study, corrosion test was carried out in distilled and tap water for the investigation on the corrosion behavior of Al-alloy that is using as material for radiator of automobile The main results obtained are as follows According to increase of temperature, open circuit potential is decreased in fresh water. And open circuit potential after deaeration is lower than that before deaeration. Corrosion current density in distilled water is less drained than that of tap water. And Corrosion current density after deaeration is less drained than that before deaeration.

CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO (하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석)

  • Cho, SungHwan;Lee, JongHyeon;Kim, DaeYoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.327-336
    • /
    • 2020
  • The high-flux advanced neutron application reactor (HANARO) is a research reactor with thermal power of 30 MW applied in various research and development using neutrons generated from uranium fission chain reaction. A degasifier tank is installed in the ancillary facility of HANARO. This facility generates gas pollutants produced owing to internal environmental factors. The degasifier tank is designed to maintain the gas contaminants below acceptable levels and is monitored using an analyzer in the gas sampling panel. If condensate water is generated and flows into the analyzer of the gas sampling panel, corrosion occurs inside the analyzer's measurement chamber, which causes failure. Condensate water is generated because of the temperature difference between the degasifier tank and analyzer when the gas flows into the analyzer. A heating system is installed between the degasifier tank and gas sampling panel to suppress condensate water generation and effectively remove the condensate water inside the system. In this study, we investigated the efficiency of the heating system. In addition, the variations in the pipe temperature and the amount of average condensate water were modeled using a wall condensation model based on the changes in the fluid inlet temperature, outside air temperature, and heating cable-setting temperature.

Alteration of Physical and chemical Characteristics of Waterlogged Archaeological Woods After Cleaning (세척 후 수침고목재의 물리.화학적 특성 변화)

  • Cha, Mi-Young;Lee, Kwang-Ho;Kim, Yoon-Soo
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.19-30
    • /
    • 2006
  • Alteration of physical and chemical characteristics and the effect of removal of mineral substances in waterlogged archaeological woods by different cleaning processes were examined using oak wood(Quercus spp.) that was excavated from wetland near Gwangju, Korea. Cleaning methods employed in the present work were (1) tools, (2) deaeration, (3) EDTA and (4) ultrasonic cleaning, which are being currently applied in the field of preservation treatment. Cleaning process were performed independently or continuously. Composition of mineral substances in the waterlogged archaeological wood was almost same as the that of soil in which waterlogged archaeological woods were buried. In case of independent cleaning, tools cleaning efficiently removed the mineral substances on surface. Surface color become brighter after cleaning with EDTA. In contrast, deaeration and ultrasonic cleaning did not show any significant removal of mineral substances. In continuous cleaning process, tool cleaning as the first step treatment showed the same effect as shown in independent cleaning. Although deaeration as the second step cleaning did not remove the mineral substances, it could be assumed to contribute the infiltration of dimensional agents by homogenization of wood. EDTA treatment (the third step cleaning) removed the iron(Fe) and increased the whiteness of wood color. The ultrasonic treatment (the fourth step cleaning) removed the sodium(Na) remained after EDTA treatment and the fine mineral substances.

  • PDF

Industrial Wastewater Treatment Containing High Concentration of Ammonia with Low Energy Micro-Bubble Reactor (저에너지 마이크로버블 장치를 이용한 고농도 암모니아 공장 폐수 처리)

  • Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.286-291
    • /
    • 2016
  • This study was carried out to evaluate the feasibility of air-stripping by DIWS(Dip Injection Wet Scrubber) system on high concentration of ammonia wastewater more than 10,000 mg/L. In the case of changing temperature from $30^{\circ}C$ to $70^{\circ}C$ maintaining pH 12.5 within the 72 hours, the removal efficiency of T-N by the present treatment plant was increased to 90.5% which was initially kept 70.3%. Although the high concentration of T-N with 9,120~12,955 mg/L was treated by micro-bubble through DIWS system maintaining the temperature of $30^{\circ}C$ within the 20 hours, the removal efficiency of T-N reached 91.9%, which indicated the possibility of air-stripping.

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.